• 제목/요약/키워드: group Lasso

검색결과 17건 처리시간 0.019초

MP-Lasso chart: a multi-level polar chart for visualizing group Lasso analysis of genomic data

  • Min Song;Minhyuk Lee;Taesung Park;Mira Park
    • Genomics & Informatics
    • /
    • 제20권4호
    • /
    • pp.48.1-48.7
    • /
    • 2022
  • Penalized regression has been widely used in genome-wide association studies for joint analyses to find genetic associations. Among penalized regression models, the least absolute shrinkage and selection operator (Lasso) method effectively removes some coefficients from the model by shrinking them to zero. To handle group structures, such as genes and pathways, several modified Lasso penalties have been proposed, including group Lasso and sparse group Lasso. Group Lasso ensures sparsity at the level of pre-defined groups, eliminating unimportant groups. Sparse group Lasso performs group selection as in group Lasso, but also performs individual selection as in Lasso. While these sparse methods are useful in high-dimensional genetic studies, interpreting the results with many groups and coefficients is not straightforward. Lasso's results are often expressed as trace plots of regression coefficients. However, few studies have explored the systematic visualization of group information. In this study, we propose a multi-level polar Lasso (MP-Lasso) chart, which can effectively represent the results from group Lasso and sparse group Lasso analyses. An R package to draw MP-Lasso charts was developed. Through a real-world genetic data application, we demonstrated that our MP-Lasso chart package effectively visualizes the results of Lasso, group Lasso, and sparse group Lasso.

일반화가법모형에서 축소방법의 적용연구 (A Study on Applying Shrinkage Method in Generalized Additive Model)

  • 기승도;강기훈
    • 응용통계연구
    • /
    • 제23권1호
    • /
    • pp.207-218
    • /
    • 2010
  • 일반화가법모형은 기존 선형회귀모형의 문제점을 대부분 해결한 통계모형이지만 의미있는 독립변수의 수를 줄이는 방법이 적용되지 않을 경우 과대적합 문제가 발생할 수 있다. 그러므로 일반화가법모형에서 변수 축소방법을 적용하는 연구가 필요하다. 회귀분석에서 변수 축소방법으로 최근에는 Lasso 계열의 접근법이 연구되고 있다. 본 연구에서는 활용성이 높은 통계모형인 일반화가법모형에 Lasso 계열의 모형 중에서 Group Lasso와 Elastic net 모형을 적용하는 방법을 제시하고 이들의 해를 구하는 절차를 제안하였다. 그리고 제안된 방법을 모의실험과 실제자료인 회계년도 2005년 자동차보혐 자료에 적용을 통해 비교하여 보았다. 그 결과 본 논문에서 제안한 Group Lasso와 Elastic net을 이용하여 변수 축소를 통한 일반화가법모형이 기존의 방법보다 더 나은 결과를 제공하는 것으로 분석 되었다.

Multiple Group Testing Procedures for Analysis of High-Dimensional Genomic Data

  • Ko, Hyoseok;Kim, Kipoong;Sun, Hokeun
    • Genomics & Informatics
    • /
    • 제14권4호
    • /
    • pp.187-195
    • /
    • 2016
  • In genetic association studies with high-dimensional genomic data, multiple group testing procedures are often required in order to identify disease/trait-related genes or genetic regions, where multiple genetic sites or variants are located within the same gene or genetic region. However, statistical testing procedures based on an individual test suffer from multiple testing issues such as the control of family-wise error rate and dependent tests. Moreover, detecting only a few of genes associated with a phenotype outcome among tens of thousands of genes is of main interest in genetic association studies. In this reason regularization procedures, where a phenotype outcome regresses on all genomic markers and then regression coefficients are estimated based on a penalized likelihood, have been considered as a good alternative approach to analysis of high-dimensional genomic data. But, selection performance of regularization procedures has been rarely compared with that of statistical group testing procedures. In this article, we performed extensive simulation studies where commonly used group testing procedures such as principal component analysis, Hotelling's $T^2$ test, and permutation test are compared with group lasso (least absolute selection and shrinkage operator) in terms of true positive selection. Also, we applied all methods considered in simulation studies to identify genes associated with ovarian cancer from over 20,000 genetic sites generated from Illumina Infinium HumanMethylation27K Beadchip. We found a big discrepancy of selected genes between multiple group testing procedures and group lasso.

다변량 선형회귀모형의 벌점화 최소거리추정에 관한 연구 (Penalized least distance estimator in the multivariate regression model)

  • 신정민;강종경;방성완
    • 응용통계연구
    • /
    • 제37권1호
    • /
    • pp.1-12
    • /
    • 2024
  • 동일한 설명변수 집합에 여러 개의 반응 변수들이 종속되어 있는 경우를 많은 실제 자료에서 볼 수 있다. 특히, 여러 개의 반응변수가 서로 상관관계를 가지고 있으면 각각의 반응변수에 대한 개별적인 분석보다는 반응변수들 사이의 상관관계를 고려한 동시 추정(simultaneous estimation)이 매우 효과적이다. 이러한 다변량 회귀분석에서 최소거리추정량(least distance estimator; LDE)은 반응변수들간의 상관관계를 모형 적합 과정에 반영하여 다차원 유클리드 공간에서 각 훈련 개체와 추정값 사이의 거리를 최소화하도록 회귀계수들을 동시에 추정한다. 뿐만 아니라 최소거리추정량은 이상치에 대한 강건성을 제공한다. 본 논문에서는 다변량 선형 회귀분석에서의 최소거리추정법에 대해 살펴보고, 나아가 효율적인 변수선택을 위한 벌점화 최소거리추정량을 제시하였다. 본 연구에서 제안하는 adaptive group LASSO 벌점항을 적용한 AGLDE 기법은 반응변수들간의 상관관계를 모형 적합에 반영함과 동시에 설명변수의 중요도에 따라 효율적으로 변수선택을 수행할 수 있다. 제안 방법의 유용성은 모의실험과 실제 자료 분석을 통해 확인하였다.

SNS 기반 여론 감성 분석 (Sentiment Analysis for Public Opinion in the Social Network Service)

  • 하상현;노태협
    • 문화기술의 융합
    • /
    • 제6권1호
    • /
    • pp.111-120
    • /
    • 2020
  • 본 연구는 소셜네트워크서비스(SNS)상의 빅데이터를 이용한 텍스트 분석기법의 응용으로서 설문 조사 기반의 여론 조사 방법론과 달리 비정형적 언어 기반의 감성 여론 조사 방법론을 제안한다. 기존의 설문 기반 여론 분석모형에 대한 대안적 방법으로 주관성에 기초한 감성 분류 모형을 이용하였다. 이를 위하여, 제20대 국회의원 선거운동 기간 중 선거 관련 실시간 트위터 자료를 수집하여 속성 기반 감성 분석을 이용한 여론의 극성과 강도에 대한 실증 분석을 수행하였다. 개별 SNS에서 사용된 단어의 극성을 분류하기 위해 Lasso 및 Ridge 회귀 모형을 이용하여 극성에 영향력이 큰 변수를 추출하였다. 추출된 변수가 극성에 미치는 긍정 및 부정에 대한 영향을 구분하고, 영향력의 강도를 분석하였다. 대중들이 소셜네트워크상에서 표현한 내용을 바탕으로 한 여론에 대한 긍정 및 부정의 감성 분석을 통해 여론의 향방을 예측하고 극성분석 모형의 정확도를 측정하여, 여론 조사 분야에서 감성 분석 방법론의 적용가능성을 확인하였다.

뇌신호 주파수 특성을 이용한 CNN 기반 BCI 성능 예측 (Prediction of the Following BCI Performance by Means of Spectral EEG Characteristics in the Prior Resting State)

  • 강재환;김성희;윤주상;김준석
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제9권11호
    • /
    • pp.265-272
    • /
    • 2020
  • 뇌파를 이용한 Brain-computer interface (BCI) 연구에서는 다른 그룹보다 그 성능을 발휘하지 못하는 소위 BCI-illiteracy 그룹이라고 알려진 사용자 집단에 대한 이해와 처리가 중요하다. 본 연구는 사용자로부터 사전 휴지 상태의 뇌파 신호를 미리 측정하고 그 신호로부터 주파수 기반의 특징 변수를 생성하여 이를 피험자 개인의 특성 변수로 사용하고, 추정된 개인 특성 변수를 이용하여 이후 움직임 상상 패러다임이 적용된 BCI 시행의 성능과 어느 정도의 정량적 연관성을 가지며 이를 정확하게 예측할 수 있는지를 밝히고자 하였다. 결과에 대한 신뢰성을 높이기 위해서 검증된 공개 뇌파 데이터베이스를 활용하고 Convolution neural network 기반의 딥러닝 기법을 활용하여 이진 BCI 성능 계산을 실시하였으며 Lasso 정규화가 적용된 선형 회귀 분석을 통해서 각 특징 변수와의 예측 관련성을 조사하였다. 첫 번째로 휴지 상태 뇌파 모든 특징 변수들과 BCI 성능 간의 연관성을 파악하기 위해서 전통적인 통계 방법들을 적용하였고 이를 통해서 전두엽에서 측정된 뇌파 신호들의 13 Hz를 기준으로 이보다 낮은 주파수와 높은 주파수 파워 간의 비율이 BCI 성능 사이와 통계적 유의미한 높은 상관성이 가지고 있다는 사실을 확인할 수 있었다. 이를 근거로 상대 주파수 비율 값이 BCI 성능을 예측해볼 수 있는 좋은 지표 후보군으로 지정하였다. 두 번째로 Lasso를 이용한 회귀 분석을 통해서 휴식 상태의 상대 주파수 비율 변수를 이용하여 BCI 성능 사이에 최대 선형 계수 0.544 수준의 선형 관계를 찾을 수 있었으며, BCI 과제를 잘 시행할 수 있는 그룹과 못할 그룹을 AUC 0.817 수준으로 예측할 수 있었다. 본 연구에서는 각 사용자마다 측정된 휴지 상태의 뇌파로부터 앞으로 있을 BCI 성능을 예측할 수 있는 방법론 제시함으로써 일반인을 대상으로 좀 더 신뢰성 있고 응용 가능한 BCI 시스템 개발에 기여하고자 한다.

Estimation for misclassified data with ultra-high levels

  • Kang, Moonsu
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권1호
    • /
    • pp.217-223
    • /
    • 2016
  • Outcome misclassification is widespread in classification problems, but methods to account for it are rarely used. In this paper, the problem of inference with misclassified multinomial logit data with a large number of multinomial parameters is addressed. We have had a significant swell of interest in the development of novel methods to infer misclassified data. One simulation study is shown regarding how seriously misclassification issue occurs if the number of categories increase. Then, using the group lasso regression, we will show how the best model should be fitted for that kind of multinomial regression problems comprehensively.

Performance of Prediction Models for Diagnosing Severe Aortic Stenosis Based on Aortic Valve Calcium on Cardiac Computed Tomography: Incorporation of Radiomics and Machine Learning

  • Nam gyu Kang;Young Joo Suh;Kyunghwa Han;Young Jin Kim;Byoung Wook Choi
    • Korean Journal of Radiology
    • /
    • 제22권3호
    • /
    • pp.334-343
    • /
    • 2021
  • Objective: We aimed to develop a prediction model for diagnosing severe aortic stenosis (AS) using computed tomography (CT) radiomics features of aortic valve calcium (AVC) and machine learning (ML) algorithms. Materials and Methods: We retrospectively enrolled 408 patients who underwent cardiac CT between March 2010 and August 2017 and had echocardiographic examinations (240 patients with severe AS on echocardiography [the severe AS group] and 168 patients without severe AS [the non-severe AS group]). Data were divided into a training set (312 patients) and a validation set (96 patients). Using non-contrast-enhanced cardiac CT scans, AVC was segmented, and 128 radiomics features for AVC were extracted. After feature selection was performed with three ML algorithms (least absolute shrinkage and selection operator [LASSO], random forests [RFs], and eXtreme Gradient Boosting [XGBoost]), model classifiers for diagnosing severe AS on echocardiography were developed in combination with three different model classifier methods (logistic regression, RF, and XGBoost). The performance (c-index) of each radiomics prediction model was compared with predictions based on AVC volume and score. Results: The radiomics scores derived from LASSO were significantly different between the severe AS and non-severe AS groups in the validation set (median, 1.563 vs. 0.197, respectively, p < 0.001). A radiomics prediction model based on feature selection by LASSO + model classifier by XGBoost showed the highest c-index of 0.921 (95% confidence interval [CI], 0.869-0.973) in the validation set. Compared to prediction models based on AVC volume and score (c-indexes of 0.894 [95% CI, 0.815-0.948] and 0.899 [95% CI, 0.820-0.951], respectively), eight and three of the nine radiomics prediction models showed higher discrimination abilities for severe AS. However, the differences were not statistically significant (p > 0.05 for all). Conclusion: Models based on the radiomics features of AVC and ML algorithms may perform well for diagnosing severe AS, but the added value compared to AVC volume and score should be investigated further.

딥러닝 시계열 알고리즘 적용한 기업부도예측모형 유용성 검증 (Corporate Default Prediction Model Using Deep Learning Time Series Algorithm, RNN and LSTM)

  • 차성재;강정석
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.1-32
    • /
    • 2018
  • 본 연구는 경제적으로 국내에 큰 영향을 주었던 글로벌 금융위기를 기반으로 총 10년의 연간 기업데이터를 이용한다. 먼저 시대 변화 흐름에 일관성있는 부도 모형을 구축하는 것을 목표로 금융위기 이전(2000~2006년)의 데이터를 학습한다. 이후 매개 변수 튜닝을 통해 금융위기 기간이 포함(2007~2008년)된 유효성 검증 데이터가 학습데이터의 결과와 비슷한 양상을 보이고, 우수한 예측력을 가지도록 조정한다. 이후 학습 및 유효성 검증 데이터를 통합(2000~2008년)하여 유효성 검증 때와 같은 매개변수를 적용하여 모형을 재구축하고, 결과적으로 최종 학습된 모형을 기반으로 시험 데이터(2009년) 결과를 바탕으로 딥러닝 시계열 알고리즘 기반의 기업부도예측 모형이 유용함을 검증한다. 부도에 대한 정의는 Lee(2015) 연구와 동일하게 기업의 상장폐지 사유들 중 실적이 부진했던 경우를 부도로 선정한다. 독립변수의 경우, 기존 선행연구에서 이용되었던 재무비율 변수를 비롯한 기타 재무정보를 포함한다. 이후 최적의 변수군을 선별하는 방식으로 다변량 판별분석, 로짓 모형, 그리고 Lasso 회귀분석 모형을 이용한다. 기업부도예측 모형 방법론으로는 Altman(1968)이 제시했던 다중판별분석 모형, Ohlson(1980)이 제시한 로짓모형, 그리고 비시계열 기계학습 기반 부도예측모형과 딥러닝 시계열 알고리즘을 이용한다. 기업 데이터의 경우, '비선형적인 변수들', 변수들의 '다중 공선성 문제', 그리고 '데이터 수 부족'이란 한계점이 존재한다. 이에 로짓 모형은 '비선형성'을, Lasso 회귀분석 모형은 '다중 공선성 문제'를 해결하고, 가변적인 데이터 생성 방식을 이용하는 딥러닝 시계열 알고리즘을 접목함으로서 데이터 수가 부족한 점을 보완하여 연구를 진행한다. 현 정부를 비롯한 해외 정부에서는 4차 산업혁명을 통해 국가 및 사회의 시스템, 일상생활 전반을 아우르기 위해 힘쓰고 있다. 즉, 현재는 다양한 산업에 이르러 빅데이터를 이용한 딥러닝 연구가 활발히 진행되고 있지만, 금융 산업을 위한 연구분야는 아직도 미비하다. 따라서 이 연구는 기업 부도에 관하여 딥러닝 시계열 알고리즘 분석을 진행한 초기 논문으로서, 금융 데이터와 딥러닝 시계열 알고리즘을 접목한 연구를 시작하는 비 전공자에게 비교분석 자료로 쓰이기를 바란다.

불균형적인 이항 자료 분석을 위한 샘플링 알고리즘들: 성능비교 및 주의점 (On sampling algorithms for imbalanced binary data: performance comparison and some caveats)

  • 김한용;이우주
    • 응용통계연구
    • /
    • 제30권5호
    • /
    • pp.681-690
    • /
    • 2017
  • 파산감지, 스팸메일 감지, 불량품 감지 등 일상생활에서 불균형적인 이항 분류 문제를 다양하게 접할 수 있다. 반응변수의 클래스의 비율이 상당히 불균형한 경우 이항 분류 모형의 예측 성능이 좋지 않다는 점은 이미 잘 알려진 사실이다. 이러한 문제점을 해결하기 위해 그 동안 오버 샘플링, 언더 샘플링, SMOTE와 같은 여러 샘플링 기법이 개발되어 왔다. 본 연구에서는 분류 모형으로 많이 사용되는 기계학습모형으로 로지스틱 회귀모형, Lasso, 랜덤포레스트, 부스팅, 서포트 벡터 머신을 위의 샘플링 기법들과 결합하여 사용했을 때의 예측 성능을 살펴보았다. 실질적인 예측 성능의 개선 여부를 확인하기 위해 네 개의 실제 자료를 분석하였다. 이와 더불어, 샘플링 방법이 사용될 때 주의해야 할 점에 대해서 강조하였다.