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Abstract

Outcome misclassification is widespread in classification problems, but methods to
account for it are rarely used. In this paper, the problem of inference with misclassified
multinomial logit data with a large number of multinomial parameters is addressed.
We have had a significant swell of interest in the development of novel methods to
infer misclassified data. One simulation study is shown regarding how seriously mis-
classification issue occurs if the number of categories increase. Then, using the group
lasso regression, we will show how the best model should be fitted for that kind of
multinomial regression problems comprehensively.
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1. Introduction

In machine learning and other applied statistics, classification is the problem of identi-
fying to which of a set of categories a new observation belongs based on a training set of
data containing observations whose category membership is known. It is possible to classify
the individuals of a population in multiple ways. Examples include classifying subjects by
sex, smoking status, health status (ill/sane), and so on. These examples are based on di-
chotomous data. Multiple classifications are also possible and more popular, e.g. individuals
may be classified in the following groups: (A) single, (B) married, (C) divorced, and (D)
widowed. However, when information is collected in the real world, the data do not often
reflect the true status of the elements in the sample, that is, the data-generating process is
often noisy (misclassification). This fact can happen due to several causes. In consumer sur-
veys, consumers may not remember their previous behaviors accurately, may misunderstand
survey questions or may intentionally misreport. In medical diagnosis, test failures and mis-
coded information are causes of distortion. The underlying statistical problem is known as
inference with misclassified data. A widespread hardship in making inference with categori-
cal data comes from misclassification (Chen, 1989). The effects of ignoring misclassification
were first noted by Bross (1954), who showed that classical estimators base sampling on a
dichotomous process under the assumption of known noise parameters. It was argued within
that paper that these parameters are needed to correct the bias resulting from estimation
based on the observed proportion. Though methods to adjust for bias in estimates due to
a misclassification of (binary) outcome have existed over the past decades, those methods
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are rarely used in practice. Methods to correct for it depend on relationship between the
observed outcome and the gold-standard outcome. To assess the extent of the misclassifica-
tion with a particular method of observation is to compare it to a definitive method which
is error free. A portion of the sample is processed by an infallible classifier, and then it is
cross-classified by both fallible and infallible classifiers. This fact allows to estimate false
positive and false negative rates. This technique is known as double sampling. A maximum
likelihood approach to double sampling was presented by Tenenbein (1972) and generalized
by Ekholm and Palmgren (1987). However, double sampling is not always the best method
because gold standard methods are often not available for many applications, can be pro-
hibitively expensive or can be computationally infeasible. Vianna (1994) and others adopted
misclassification matrix for this problem while noise parameters were given in advance or
estimated. They, however, did not consider predictor variables but outcome variables only.
Polychotomous logistic regression model is fully introduced and developed in the literature
(Songyong and Heemo, 2014). Multinomial outcomes with many levels can be challenging
to model. Models of response variables with large numbers of outcome categories encounter
several difficulties. Foremost is the rate at which the model dimensions expand when adding
new covariates. If there are p categories, adding a covariate whose values are specific to
the decision-maker adds p − 1 identifiable regression parameters to the model. No correc-
tion for outcome misclassification with a large number of outcomes affects the estimation of
regression parameters seriously

2. Outcome model specification

Suppose that we have apparent probabilities p1, . . . , pm, have true probabilities π1, π2, · · · ,
πm, where pi = P (Tk = i), πi = P (Yk = i) using the random variable Xk having the observed
value and the random variable Tk having the true value in the k−th sampling unit where
k = 1, 2, · · · , n. The data are divided into m disjoint categories denoted by θ1, θ2, . . . , θm.
The main interest is focused on making inferences on the proportions π1, π2, · · · , πm of
individuals belonging to the classes θ1, θ2, · · · , θm. The noise parameters are characterized
by the transition (or misclassification) matrix:

Λ =

 λ11 . . . λ1m

...
. . .

...
λm1 . . . λmm


where λij denotes the probability that an individual from θi is classified in θj , θ = (θ1, θ2, · · · ,
θm)′ denotes the vector of true proportions and λi = (λi1, λi2, · · · , λim)′ denotes the transi-
tion vector for the class θi (i = 1, 2, · · · ,m).

Multinomial logistic regression is used when the dependent variable is nominal. Multi-
nomial logit regression is a solution to the classification problem to assume that a linear
combination of the observed features and regression parameters can be used to determine
the probability of each particular outcome of the dependent variable. The best values of the
parameters are in general determined from a training data.

As in other forms of linear regression, multinomial logistic regression uses a linear predic-
tor function f(j, i), j = 1, 2, · · · ,m, i = 1, 2, . . . , n to predict the probability that observation
i has outcome j, of the following form: f(j, i) = β0,j +β1,jx1,i+β2,jx2,i+ · · ·+βp−1,jxp−1,i,
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where βl,j is a regression coefficient associated with the l-th explanatory variable and the
j-th outcome. More compactly, f(j, i) = βj ·xi, where βj is the set of regression coefficients
associated with outcome j, and xi is the set of explanatory variables associated with obser-
vation i. Suppose that the number of response levels is m. The corresponding model is given
by

Pr(Yi = 1) =
eβ1·xi

1 +
m−1∑
j=1

eβj ·xi

Pr(Yi = 2) =
eβ2·xi

1 +
m−1∑
j=1

eβj ·xi

...

Pr(Yi = m) =
1

1 +
m−1∑
j=1

eβj ·xi

.

Vienna (1994) with many researchers have assumed that misclassification matrix (confusion
matrix) should be estimated from a validation study. or be known in advance. Please refer
to that paper in more details.

3. Motivating example

We simulate multinomial logistic regression model using the function multinom in R pack-
age nnet. That model consists of 7 outcomes (A, B, C, D, E, F, G) with the reference level A
and the predictor variable normally distributed random variable X1 and the total number
of observations is 100. We partition the data into training dataset and test data set which
have 80 observations and 20 observations, respectively. Based upon the training dataset,
we get a set of 20 predicted probabilities and compare true outcomes in test dataset with
the outcomes with the highest predicted probability based upon the fitted model with the
training dataset. Now let us describe that fitted model as below.

log(B/A) = 0.7427399− 0.14767536 ∗X1

log(C/A) = 0.6134757− 0.05831624 ∗X1

log(D/A) = 0.4320643 + 0.32611181 ∗X1

log(E/A) = 0.4823187 + 0.47068902 ∗X1

log(F/A) = 0.2543827 + 0.07211916 ∗X1

log(G/A) = 0.6206348 + 0.15067462 ∗X1

From the table in Appendix, we see that as the number of outcomes increases, misclassifi-
cation increases exponentially. In a multinomial logit model, one unit increase in the number
of outcomes brings about the increase in the entire number of explanatory variables. As a
good illustration, we have 7 outcomes with the 6 correspondent models. What will happen
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if a lot of outcomes exist? The correspondent model is too complex to be defined. From
the simulation study above, we can observe how serious misclassification becomes, that is,
15 out of 20 cases. Thus, the selection of significant outcomes is in priority, more exactly,
removing the redundant outcomes with rare chances. And then with that reduced number
of outcomes, we utilizes predictor variable selection method, which is much easier way to
model selection. Now let us investigate the property of outcomes.

4. Proposed model

As for polychotomous logistic regression composed of ordinal responses, there is the com-
mon sense that the model assume the proportionality assumption. The most popular ordinal
link function uses every probability in every function by contrasting the lower levels of re-
sponse variable with the higher levels of response Y . The general model has unequal slopes
for the predictors, and we need enough data to estimate a different coefficient for each pre-
dictor in each response function. To simplify this model, you can induce an ordering on the
linear predictors by using the same slope parameters for each response function and con-
straining the intercepts to increase or decrease. On the other hand, for nominal response,
a logit link function is defined for each probability of Pr(Y = j). A link function should
be defined so that each response function contrasts a lower level with the last level: This
is the generalized logit link, and it ignores the order of the responses, beyond identifying
the last one as the reference response. Thus, the multinomial regression consists of nominal
variables without ordering as a definition of a nominal variable. We should deal with each
response separately after reduced number of outcomes. Viana (1994) clearly discussed the
misclassification matrix for that matter. Please refer to that for more details. With reduced
model regarding the number of responses, we fit the data to each model for a response.

Penalized regression is effective specially when the number of regression parameters is
huge and those are correlated (SangIn, 2015). Tibshrani (1996) proposed the penalized
regression by the lasso penalty. Meier et al. (2008) enhanced that regression by the group
lasso penalty which is useful for the multinomial regression. In summary, first suppose that
we have independent and identically distributed observations (xi,Yi), i = 1, . . . , n with a
p-dimensional vector xi ∈ Rp of G predictors and the multinomial response variable vector
1 × m vector YT

i = (Yi,1, Yi,2, . . . , Yi,m) for Yi,j ∈ {0, 1}. We define dfg as the degree of

freedom of the g−predictor. Pβ(xi) = P (Yi,j = 1|xi) should be used as log{ pβ(xi)
1−pβ(xi)

} =

νβ(xi). βg ∈ Rdfg is the parameter vector corresponding to the g−th predictor. The group

lasso estimator β̂λ is minimizer of the convex function

Sλ(β) = −l(β) + λ

G∑
g=1

s(dfg)||βg||2,

where s(dfg) of the number df
1/2
g to ensure that the penalty term is of the order of the

number of the parameters (df)g, lβ =
∑n
i=1 yiνβ(xi) − log[1 + exp(νβ(xi)] and the whole

parameter vector β ∈ Rp+1 as β = (β0,β
T
1 , . . . ,β

T
G)T . νβ(xi) = β0 +

∑G
g=1 x

T
i,gβg and

xi = (xTi,1, . . . ,x
T
i,G)T with the group of variables xi,g ∈ R(df)g , g = 1, . . . , G. For easier

understanding, we can think of multivariate analysis of variance for a set of dichotomous
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response variables where k =
∑G
g=1 dfg. The response matrix Yn×m given by Y11 . . . Y1m

...
. . .

...
Yn1 . . . Ynm

 .

The matrix of explanatory variables Xi with dimension k×p is (XT
i1, . . . ,X

T
iG)T as below.

Xi =



Xi1,1,1 . . . Xi,df1,p

...
. . .

...
Xij,dfj ,1 . . . Xi,dfj ,p

...
. . .

...
XiG,dfG,1 . . . Xi,dfG,p

 .

The matrix of regression parameters β(k+1)×m given by

β =



β0,1,1 . . . β0,1,m

β1,1,1 . . . β1,1,m

...
. . .

...
β1,df1,1 . . . β1,df1,m

...
. . .

...
βG,dfG,1 . . . βG,dfG,m


.

Based on the above model, we fit the simulation data in next section.

5. Numerical analysis

We simulate a multinomial logistic regression data based on R grpreg package. There are
100 observations with a set of 5 multinomial response variables. For each response variable,
we fit the model with a group of 10 explanatory variables per the same group size 5. The
matrix of fitted regression parameters β̂ are summarized as below.

β̂ =



0.3294 0.3001 0.2734 0.2491 0.2270 0.2068 0.1885 0.1710 0.1565 0.1426

0.1299 0.1184 0.1079 0.0983 0.0895 0.0816 0.0743 0.0677 0.0617 0.0562
0.0512 0.0467 0.0425 0.0388 0.0353 0.0322 0.0293 0.0267 0.0243 0.0222

0.0202 0.0184 0.0168 0.0153 0.0139 0.0127 0.0116 0.0105 0.0096 0.0087

0.0080 0.0073 0.0066 0.0060 0.0055 0.005 0.0046 0.0042 0.0038 0.0035
0.0031 0.0029 0.0026 0.0024 0.0022 0.0020 0.0018 0.0016 0.0015 0.0014

0.0012 0.0011 0.0010 9e− 04 9e− 04 8e− 04 7e− 04 6e− 04 6e− 04 5e− 04

5e− 04 4e− 04 4e− 04 4e− 04 3e− 04 3e− 04 3e− 04 3e− 04 2e− 04 2e− 04
2e− 04 2e− 04 2e− 04 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04
1e− 04 1e− 04 1e− 04 1e− 04 1e− 04 0.000 0.000 0.000 0.000 0.000


.

It should be noted that a group lasso penalty shrinks each parameter close to 0 at once
instead of utilizing complex model selection procedures in the literature of a usual linear
regression model.
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6. Concluding remarks

We have seen how we estimate for misclassified regression data with ultra-high level of
response variables. First of all, redundant response variables should be diminished for an
easier model. Then, it should be kept in mind that one categorical variable with k levels
should be represented as k − 1 dummy variables. The multinomial outcome with m levels
corresponds to a group of m dichotomous variables. Based on those, we can fit the model
appropriately. Since we handle too many explanatory variables because of the nature of
a multinomial logistic regression, a group lasso penalized regression can be so useful by
shrinking each parameter close to 0 automatically.

Appendix

Predicted probabilites

Pr(Y=A) Pr(Y=B) Pr(Y=C) Pr(Y=D) Pr(Y=E) Pr(Y=F) Pr(Y=G) Predictor
True

response

Predicted

response

0.18639908 0.1638810 0.1369951 0.14417576 0.11452575 0.1652575 0.08876579 0.005764186 F A

0.16858519 0.1533320 0.1483103 0.16488754 0.11259153 0.1673830 0.08491050 0.385280401 A A

0.20465136 0.1739768 0.1258409 0.12542195 0.11575566 0.1621653 0.09218806 -0.370660032 C A

0.15682700 0.1459786 0.1559858 0.18004046 0.11087645 0.1682226 0.08206913 0.644376549 B D

0.19730799 0.1700001 0.1302723 0.13268842 0.11534723 0.1635107 0.09087324 -0.220486562 A A

0.17105584 0.1548371 0.1467174 0.16185988 0.11290612 0.1671467 0.08547690 0.331781964 C A

0.13720414 0.1329826 0.1690953 0.20836573 0.10714595 0.1684446 0.07676172 1.096839013 A D

0.16629349 0.1519236 0.1497942 0.16774312 0.11228581 0.1675841 0.08437574 0.435181491 B D

0.20245622 0.1727999 0.1271574 0.12755632 0.11564539 0.1625811 0.09180362 -0.325931586 A A

0.13503106 0.1314856 0.1705655 0.21176250 0.10666033 0.1683671 0.07612795 1.148807618 E D

0.14157630 0.1359590 0.1661469 0.20169668 0.10807747 0.1685354 0.07800828 0.993503856 C D

0.16114140 0.1487136 0.1531519 0.17433351 0.11154852 0.1679710 0.08314009 0.548396960 A D

0.17538591 0.1574420 0.1439435 0.15667769 0.11342065 0.1666856 0.08644459 0.548396960 A A

0.21739476 0.1806103 0.1183381 0.11363811 0.11620401 0.1595367 0.09427808 -0.627906076 G A

0.12635689 0.1253905 0.1764600 0.22589452 0.10456586 0.1678307 0.07350146 1.360652449 F D

0.21601620 0.1799089 0.1191380 0.11486449 0.11617091 0.1598380 0.09406349 -0.600259587 F A

0.09556021 0.1020998 0.1974354 0.28483331 0.09483733 0.1624292 0.06280482 2.187332993 G D

0.11954105 0.1204637 0.1811120 0.23768600 0.10273595 0.1671362 0.07132513 1.532610626 A D

0.19804840 0.1704062 0.1298220 0.13193924 0.11539356 0.1633810 0.09100955 -0.235700359 A A

0.23746460 0.1903823 0.1070224 0.09701788 0.11628681 0.1547299 0.09709614 -1.026420900 F A
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