• 제목/요약/키워드: groundwater treatment

검색결과 471건 처리시간 0.029초

지하수자원 확보를 위한 인공함양 기술 특허동향 및 장벽 분석 (Trend and Barrier in the Patents of Artificial Recharge for Securing Goundwater)

  • 김용철;서정아;고경석
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권3호
    • /
    • pp.59-75
    • /
    • 2012
  • It is getting difficult to manage water resources in South Korea because more than half of annual precipitation is concentrated in the summer season and its intensity is getting severe due to global warming and climate change. Artificial recharge schemes can be a useful method to manage water resources in Korea adapting to climate change. Patent analysis enables us to prevent overlapping investment and to find out unoccupied technology. In this study, international patent trends and barriers of artificial recharge technology are analysed for patents of Korea, Japan, the United States and Europe. The four artificial recharge methods such as well recharge, surface infiltration, bank filtration and underground structures are classified as main class and the nine sub-technologies such as water intake, water treatment, injection wells, monitoring of groundwater flow, groundwater pumping, surface infiltration/soil aquifer treatment, radial collection well, iron/manganese treatment, and underground subsurface dam are classified as intermediate class. Water intake techniques are subdivided into five classifications. Total 1,281 of patents, searched by WIPS DB tool and selected after removing noisy patents, are analyzed quantitatively to evaluate application trends by year, applicant, country for each classified technologies and analyzed qualitatively to find out occupied and unoccupied technologies. It is expected that upcoming research and development project could be performed efficiently in that an avoidance plan for the similar patents and differentiation plan for the advancing patents are set up based on the quantitative and qualitative analysis results from this research.

사용종료매립장의 관리실태 및 주변 토양오염특성 연구

  • 나경호;김문정;김태화;최승석;손진석
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 총회 및 춘계학술발표회
    • /
    • pp.124-127
    • /
    • 2001
  • The purpose of this study is to investigate and evaluate management status of use-completed landfill in Kyunggido area and characteristics of its surrounding soil contamination. The soil samples showed Showed the anxious standard of soil contamination. The effect of liner system and leachate treatment unit showed very low because of showing similar concentration with non system landfill. Therefore, the further supplementation of leachate treatment unit, rainfall exclusion unit, LFG exclusion unit etc. must be performed to ensure a efficient management for landfills.

  • PDF

생물학적 슬러리 반응조를 이용한 PAHs 오염 퇴적오니의 처리 (Treatment of PAHs contamninated sediments using a slurry reactor)

  • 배범한;이성재;박규홍;조경숙;정연규
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 추계학술대회
    • /
    • pp.177-181
    • /
    • 2000
  • A lab-scale slurry reactor was developed for the treatment of contaminated sediments with polycyclic aromatic hydrocarbons (naphthalene, phenanthrene). In this system, range from 85 to 95% of PAHs with 2~3 rings were degraded within 11 days. Higher naphthalene degradation(94.05%) over phenanthrene degradation(87.07%) was probably due its higher solubility. Both compounds were not detected in aqueous phase after 7days and only 26.8% of naphthalene and 49.1% of phenanthrene were biodegraded. Removal TPH(Total Petroleum Hydrocarbon) concentration in solid after 11 days of treatment was 46%.

  • PDF

토양/대수층 처리(soil aquifer treatment)에서 유기물과 질소화합물 제거와 이송 모델링-(I) 모델 개발 및 검증 (Modeling Fate and Transport of Organic and Nitrogen Species in Soil Aquifer Treatment-(I) Model Development and Verification)

  • 김정우;김정곤;차우석;최희철
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제10권3호
    • /
    • pp.9-15
    • /
    • 2005
  • 토양/대수층 처리(Soil Aquifer Treatment, SAT)는 하수처리장으로부터의 2차 또는 3차 처리수를 대수층으로 침투시켜, 토양 매질에서 일어나는 물리적/생화학적 반응에 의해 재처리하는 용수 재이용 기술이다. SAT에서의 주요 관심 대상은 유기물과 질소화합물의 제거와 이송에 있다. 본 연구에서는 암모늄의 질산화 반응, 질소산회물의 탈질 반응, 그리고 유기물의 산화반응을 고려하여 SAT에서 일어나는 반응 메커니즘을 규명하고 이를 지하수 흐름과 이송 모렐 에 접목시킴으로써 SAT 모델링 시스템을 구현하고자 하였다. 실험실 일차원 불포화 토양 컬럼 실험을 통한 모델 검증에서 암모늄, 질산성 질소, DOC, 용존산소 모두 일정한 농도 범위 안에서 일치하였다. 모델 변수에 대한 민감도 분석에서, 암모늄 분배계수는 유출부의 암모늄 농도에, 용존산소 저해상수는 유출부의 유기물 농도에, 그리고 미생물 감쇄계수는 유출부의 용존산소 농도에 영향을 주었다.

생석회 처리가 토양 세균의 생존과 군집구조에 미치는 영향 (Effects of Quicklime Treatment on Survival of Bacteria and Structure of Bacterial Community in Soil)

  • 조영근
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권1호
    • /
    • pp.47-54
    • /
    • 2012
  • When quicklime is added into soil for various purposes, abrupt changes in soil chemistry may affect essential ecological functions played by indigenous bacterial communities in soil. The magnitude of influence was estimated by observing changes in abundance and diversity of soil bacteria after quicklime treatment. When several soil samples were treated up to 20% (w/w) quicklime, plate count of viable cells ranged $10^2{\sim}10^3$ CFU $g^{-1}$, showing a reduction of more than $10^4$ times from viable counts of the untreated sample. Diversity of the bacterial isolates that survived after quicklime treatment was analyzed by conducting $GTG_5$ rep-PCR fingerprinting. There were only two types of fingerprints common to both 5% and 20% quicklime samples, implying that bacteria surviving at different strength of quicklime treatment differed depending on their tolerance to quicklime-treated condition. Isolates surviving the quicklime treatments were further characterized by Gram staining and endospore staining. All isolates were found to be Gram positive bacteria, and 85.4% of them displayed endospores state. In conclusion, most bacteria surviving quicklime treatment appear to be endospores. This finding suggests that most of ecological functions of bacteria in soil are lost with quicklime treatment.

농업용 관정의 기계적 처리 이후 성능 개선 효과의 정량적 평가 사례 (Quantitative Evaluation for Improvement Effects of Performance After Mechanical Rehabilitation Treatments on Agricultural Groundwater Well)

  • 송성호;이병선;안중기
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권4호
    • /
    • pp.42-49
    • /
    • 2016
  • Step-drawdown pumping tests for identifying the improvement of groundwater well performance after rehabilitation treatments were conducted in three longstanding wells. Three selective mechanical treatment methods including power bubble, high-voltage electric pulse, and air surging were applied to these wells and the applicability of these methods to secure additional groundwater resources were evaluated quantitatively. Commonly, drawdown at final stage of stepdrawdown pumping tests after rehabilitation decreased by as much as 0.61~0.70 meters compared to those before rehabilitation. In addition, final specific drawdown values of three wells increased from 9% to 14% after rehabilitation. Formation loss coefficient and well loss coefficient decreased to 6.1% and 60.6%, respectively, indicating some clogging materials by precipitation/corrosion/microbe within pores of aquifer materials, gravel packs, and screens were effectively removed by applied methods. Decrease of formation loss coefficient was higher in the well applied by the power bubble method meanwhile high-voltage electric pulse method demonstrated the higher decrease of well loss coefficient. Additionally secured groundwater amounts after rehabilitation ranged from 23.3 to 32.1 m3/day, which account for 8~16% of initially developed pumping rates of the wells. From the results of this study, the effective selection of rehabilitation treatments considering aquifer characteristics are expected to contribute to secure groundwater resources for irrigation as well as to plan systematic management program for groundwater resources in rural area.

수질 장기관측자료를 활용한 우리나라의 지하수 수질변동 특성

  • 김규범;이강근
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.94-96
    • /
    • 2003
  • Since 1995, MOCT(Ministry of Construction and Transportation) and KOWACO(Korea Water Resources Corporation) have established the National Groundwater Monitoring Network in South Korea and also MOE(Ministry of Environment) has operated Groundwater Quality Monitoring network. Until 2001, 202 monitoring stations by MOCT and 780 monitoring wells by MOE have been constructed, measured groundwater level and analyzed water samples. Groundwater quality analysis has been conducted two times a year during last 6 years for all monitoring wells. The quality data has about 15 components including pH, COD, Count of Coliform group, and etc.. Trend analysis has been peformed for 6 components(Coliform, pH, COD, NO$_3$-N, Cl and EC) of water quality which are analyzed more than 7 times for total monitoring wells. Two test methods have been used ; Sen's test and Mann-Kendall test. These trend tests have been done at the 0.05 significance level. By the result of Sen's test, Count of Coliform group has either upward or downward trends at 4.3 percent of the monitoring points. pH does at 5.6 percent, COD does at 8.6 percent, Nitrate-Nitrogen does at 13.2 percent, Chloride does at 13.4 percent, and. EC does at 11.6 percent of the monitoring points. The exact causes of the groundwater quality trends are difficult to specify. Notable downward trends in nitrate at many monitoring points may be the result of reduction on some contamination sources. Potential causes include diminished agricultural areas, improvements in sewage treatment and a decrease in atmospheric deposition. Increase in chloride at many monitoring points may be the result of increased non-point source pollution such as road salting and runoff from sprawling paved developments and suburbs.

  • PDF

Changes of soil water content and soybean (Glycine max L.) response to groundwater levels using lysimeter

  • Lee, Sanghun;Jung, Ki-Yuol;Chun, Hyen-Chung;Choi, Young-Dae;Kang, Hang-Won
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.299-299
    • /
    • 2017
  • Due to the climate changes in Korea, the numbers of both torrential rain events and drought periods have increased in frequency. Water management practice against water shortage and flooding is one of the key interesting for field crop cultivation, and groundwater often serves as an important and safe source of water to crops. Therefore, the objective of this study is to evaluate the effect of groundwater table levels on soil water content and soybean development under two different textured soils. The experiment was conducted using lysimeter located in Miryang, Korea. Two types of soils (sandy-loam and silty-loam) were used with three groundwater table levels (0.2, 0.4, 0.6m). Mean soil water content during the soybean growth period was significantly influenced by groundwater table levels. With the continuous groundwater level at 0.2m from the soil surface, soil water content was not statistically changed between vegetative and reproductive stage, but the 0.4 and 0.6m groundwater table level was significantly decreased. Lower chlorophyll content in soybean leaves was found in shallow water table treatment in earlier part of the growing season, but the chlorophyll contents were non-significant among water table treatments. Groundwater table level treatments were significantly influenced on plant available nitrogen content in surface soil. The highest N contents were observed in 0.6m groundwater table level. It is probably due to the nitrogen loss by denitrification as the result of high soil water content. The length and dry weight of primary root was influenced by groundwater level and thus the highest length and dry weight of root were observed in 0.6m water table level. This result showed that soybean root growth did not extend below the groundwater level and increased with the depth of groundwater table level. The results of this study show that the management of groundwater level can influence on soil characteristics, especially on soil water content, and it is an important practice of to reduce yield loss caused by the water stress during the crop growing season.

  • PDF

Development of a distributed hydrological model considering hydrological change

  • Kim, Deasik;An, Hyunuk;Jang, Minwon;Kim, Seongjoon
    • 농업과학연구
    • /
    • 제45권3호
    • /
    • pp.521-532
    • /
    • 2018
  • In recent decades, the dry stream phenomena of small and medium sized rivers have been attracting much attention as an important social problem. To prevent dry stream phenomena, it is necessary to build an infrastructure that manages rivers. To accurately determine the progress of dry stream phenomena, it is necessary to continuously measure the discharge and other hydrological factors for small and medium sized rivers. However, until now, the flow data for small and medium rivers in Korea has been insufficient. To overcome the lack of supporting data for supporting rational decision-making in policy and project implementation, a short- and long-term hydrological model was developed that takes into consideration hydrological changes such as the increase of the impervious area due to urban development and groundwater pumping, the construction of a large-scale sewage treatment plant, the maintenance of stream-oriented rivers, etc. In the developed model, the distributed grid is represented by three layers: Surface flow, interflow, and groundwater flow. The surface flow and intermediate flow flowed along the flow direction, and the groundwater flow was calculated by a two-dimensional groundwater analysis model such that the outflow occurred in all directions without a specific flow direction. The effects of land use and cover on evapotranspiration and infiltration and the effects of multiple landscapes can be simulated in the developed model.