• Title/Summary/Keyword: groundwater treatment

Search Result 472, Processing Time 0.032 seconds

Study of Solidification by Using Portland and MSG(micro silica grouting) Cements for Metal Mine Tailing Treatment (금속 광미 처리를 위한 포틀랜드 시멘트와 MSG(micro silica grouting) 시멘트 고형화 실증 실험 연구)

  • Jeon, Ji-Hye;Kim, In-Su;Lee, Min-Hee;Jang, Yun-Young
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.699-710
    • /
    • 2006
  • Batch scale experiments to investigate the efficiency of the solidification process for metal mine tailing treatment were performed. Portland and MSG (micro silica pouting) cements were used as solidifier and three kinds of mine tailings (located at Gishi, Daeryang, and Aujeon mine) were mixed with cements to paste solidified matrices. Single axis com-pressible strengths of solidified matrices were measured and their heavy metal extraction ratios were calculated to investigate the solidification efficiency of solidified matrices created in experiments. Solidified matrices ($5cm{\times}5cm{\times}5cm$) were molded from the paste of tailing and cements at various conditions such as different tailing/cement ratio, cement/water ratio, and different cement or tailing types. Compressible strengths of solidified matrices after 7, 14, and 28 day cementation were measured and their strengths ranged from 1 to $2kgf/mm^2$, which were higher than Korean limit of compressible strength for the inside wall of the isolated landfill facility ($0.21kgf/mm^2$). Heavy metal extractions from intact tailings and powdered matrices by using the weak acidic solution were performed. As concentration of extraction solution for the powdered solidified matrix (Portland cement + Gishi tailing at 1:1 w.t. ratio) decreased down to 9.7 mg/L, which was one fifth of As extraction concentration for intact Gishi tailings. Pb extraction concentration of the solidified matrix also decreased to lower than one fourth of intact tailing extraction concentration. Heavy metal extraction batch experiments by using various pH conditions of solution were also performed to investigate the solidification efficiency reducing heavy metal extraction rate from the solidified matrix. With pH 1 and 13 of solution, Zn and Pb concentration of solution were over the groundwater tolerance limit, but at pH $1{\sim}13$ of solution, heavy metal concentrations dramatically decreased and were lower than the groundwater tolerance limit. While the solidified matrix was immerged Into very acidic or basic solution (pH 1 and 13), pH of solution changed to $9{\sim}10$ because of the buffering effect of the matrix. It was suggested that the continuous extraction of heavy metals from the solidified matrix is limited even in the extremely high or low pH of contact water. Results of experiments suggested that the solidification process by using Portland and MSG cements has a great possibility to treat heavy metal contaminated mine tailing.

Characteristic Distributions of Nutrients and Water Quality Parameters in the Vicinity of Mokpo Harbor after Freshwater Inputs (담수 유입에 따른 목포항 주변해역의 영양염 및 수질인자 분포 특성)

  • Kim, Yeong-Tae;Choi, Yoon-Seok;Cho, Yoon-Sik;Choi, Yong Hyeon;Jeon, Seungryul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.617-636
    • /
    • 2015
  • The Mokpo coastal waters receive discharges from three artificial lakes(Youngsan, Youngam, Geumho) and other terrigenous freshwater inflows(streams, sewage treatment effluent, fresh groundwater), which exhibit very high concentrations of nutrients and/or organic matters. To understand spatial distributions of nutrients(DIN, DIP, DSi) and other water quality parameters(Chl-a, water temperature, salinity, DO, COD, SS), field surveys were conducted at 10 stations in the Mokpo harbor and adjacent estuaries on May, July, September, and November 2008 within 10 days following discharge events from artificial lakes. In this study, the freshwater flow rate influxed by the operation of sea dike sluice had significant influence on water qualities of the Mokpo coastal waters, although nutrient concentrations in other freshwater sources such as streams, sewage treatment effluent, and fresh groundwater were much higher. As a result of statistical analysis, DIN, COD, and Chl-a had a negative correlation with salinity. Therefore it was shown that discharge extents, time, and nutrients from the Youngsan lake were major impact factors dominating the spatial characteristics of nutrients and other water quality parameters in the Mokpo harbor and adjacent waters. However, despite non-discharge from the Youngsan Lake on September of this investigated period, it was observed that the nutrient addition was taking place in the lower layer of the estuary suggesting nutrient supply through different pathways. This result has emphasized the need to implement the combined assessment about the cumulative impacts on the Youngsan Estuary environment and ecosystem due to freshwater inputs derived from the artificial lakes as well as other terrigenous inflows, or benthic releases.

Prevention and Control of composting Odors Using Microbial Inocula, KMT-199 (미생물 종균제(KMT-199)를 이용한 퇴비제조 공정의 악취제거)

  • Nam, Y.;Kim, G.J.;Sung, K.C.;Park, K.D.;Kim, J.M.
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.57-65
    • /
    • 1999
  • Generation of gaseous ammonia has been a major problem in composting facilities. Microbial inocula. KMT-199(brand name: CompoBac$^{TM}$). was developed in INBI0NET CORPORATION and tested in the field for its ammonia reducing capability. When KMT-199 was applied. a ten-fold increase of mesophilic and thermophilic microorganisms was observed during the early stage of composting process. Also. the temperature and pH of early stage compost increased at a higher rate when compared to control. KMT-199 treated compost reached highest temperature of $75^{\circ}C$at day 9, indicating treatment could shift the maximum composting temperature to 3 days earlier The highest temperature also reached $3^{\circ}C$ higher than the control. The pH of compost gradually increased during composting. KMT-199 treated compost reached a plateau of pH 9.32 at day 15 after treatment, and then slowly decreased thereafter. On the other hand. pH of the control steadily increased until day 38 of composting. 29% reduction of gaseous ammonia generation during composting was observed compared to that of the control. KMT-199 amended compost resulted in a higher germination rate of radish seeds than the control. These results indicate that application of microbial inocula facilitates degradation of organic materials, including ammonia during the composting process.

  • PDF

Development of a Bioscrubber for Treatment of VOC Emissions from Contaminated Soil with Hydrocarbons (유류오염토양으로부터 발생하는 VOC가스처리를 위한 바이오스크러버 개발)

  • 장윤영;황경엽;곽재호;최대기
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.83-90
    • /
    • 1997
  • Aiming at the treatment of large volumes of gas with a low concentration of poorly water soluble VOC(Volatile Organic Compound), a new system is proposed: the combination absorption tower/bioreactor. In the scrubber part of the bioscrubbing system, the contaminating compounds are absorbed in a aqueous phase. The contaminated scrubbing liquid is transported to the bioreactor, where the compounds are biodegraded by aerobic microorganisms (mainly to carbon dioxide, water, and biomass). In this study, separation of a volatile organic compound(VOC) out of a waste gas stream has been carried out using a re-cyclable high boiling point extrant(HBE). The liquid stream containing a high boiling point entrant(HBE) scrubs the gas stream in a direct gas-liquid countercurrent contacting operation in a packed tower for the removal of said component from the gaseous stream. A packed-bed column using Pall Ring was set up in order to simulate practical conditions for the scrubbing tower. The liquid stream transported to the bioreactor is recovered and recycled to the scrubber. The model gas, which contained 400 mg/$\textrm{m}^3$ of toluene, at a rate of 100 L/min, flowed into the packed column where the scrubbing liquid trickled over the packing in countercurrent to the rising gas at 10~15L/min. The bioscrubber designed for large volume air streams containing VOCs showed removal efficiency up to 80% in an optimum operating conditions during the tests fer removing toluene from an air stream by scrubbing the air stream with HBE.

  • PDF

A Study on the Treatment of Petroleum-Contaminated Soils Using Hydrogen Peroxide (석유로 오염된 토양의 과수를 이용한 처리에 관한 연구)

  • 최진호;김재호;공성호
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.3
    • /
    • pp.49-57
    • /
    • 1997
  • Naturally-occurring iron minerals, goethite and magnetite, were used to catalyze hydrogen peroxide and initiate Fenton-like oxidation of silica sand contaminated with diesel, kerosene in batch systems. Reaction conditions were investigated by varying H$_2$0$_2$concentration(0%, 1%, 15%), initial contaminant concentration(0.2, 0.5, 1.0g diesel and kerosene/kg soil), and iron minerals(1, 5wt% magnetite or goethite). Contaminant degradations in silica sand-iron mineral-$H_2O$$_2$ systems were identified by determining total petroleum hydrocarbon(TPH) concentration. In case of silica sand contaminated with diesel(1g contaminan/kg soil with 5wt% magnetite) addition of 0%, 1%, 15% of $H_2O$$_2$showed 0%, 25%, and 60% of TPH reduction in 8 days, respectively When the mineral contents were varied from 1 to 5wt%, removal of contaminants increased by 16% for magnetite and 13.1% for goethite. The results from system contaminated by kerosene were similar to those of the diesel. Reaction of magnetite system was more aggressive than that of goethite system due to dissolution of iron and presence of iron(II) and iron(III); however, dissolved iron precipitated on the surface of iron mineral and seemed to cause reducing electron transfer activity on the surface and quenching $H_2$$O_2$. The system used goethite has better treatment efficiency due to less $H_2$$O_2$ consumption. Results of this study showed possible application of catalyzed $H_2$$O_2$ system to petroleum contaminated site without addition of iron source since natural soils generally contain iron minerals such as magnetite and goethite.

  • PDF

Behaviour of Fungicide $^{14}C-Propiconazole$ in Rice Plant Grown-Lysimeter Soil (벼 재배 Lysimeter 토양중 살균제 $^{14}C-Propiconazole$의 행방)

  • Kim, In-Seon;Suh, Yong-Tack
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.3
    • /
    • pp.215-220
    • /
    • 1999
  • Behaviour of a fungicide $^{14}C-propiconazole$ was investigated in a rice plant grown-lysimeter soil. The lysimeter was composed of soil cores of silty clay. $Propiconazole(Tilt\;250^R\;EC)$ plus $^{14}C-labeled$ propiconazole was applied on the surface of lysimeter soil at a rate of 0.12kg/10a after rice transplanting. The application was done consecutively for two years. The behaviours of propiconazole in the lysimeter soil were investigated by measuring the amounts of $^{14}C-leachate$, $^{14}CO_2$, the residues distributed in each soil segment and taken up by rice plants. The relative amounts of $^{14}C$ leached from the lysimeter were the background level of the applied $^{14}C$ throughout expeiment. The amounts of $^{14}CO_2$ evolved from the lysimeter were 5.7 and 7.8% of the original $^{14}C$ in the 1st and 2nd treatment, respectively. The amounts of volatile substances soil were the background level throughout experiment, which indicated that propiconazole was stable chemically in the experimental condition. The $^{14}C-activities$ absorbed and translocated into rice plants were 3.7 and 7.6% in 1st and 2nd treatment, respectively. The $^{14}C-activities$ in the soil layer of the lysimeter was distributed mainly in the depth of 0 to 20cm, which suggested propiconazole did not have the risk of groundwater contamination.

  • PDF

Biostability Characterization in a Full-scale Nanofiltration Water Treatment System (대규모 나노여과 정수처리 시스템에서의 생물학적 안정성에 관한 연구)

  • Hong, Seung-Kwan;Escobar, Isabel C.;Cho, Jae-Weon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.158-162
    • /
    • 2005
  • The objective of this study was to assess the assimilable organic carbon (AOC) in processing water, a measurement of biostability, at several stages of a full-scale nanofiltration (NF) water treatment plant. The NF membrane plant investigated was a $45,400\;m^3$/day (12 mgd) water softening facility at Plantation City in southern Florida, which utilized an organic rich groundwater (dissolved organic carbon (DOC) = 17.6 mg/L) originated from a surficial aquifer. The average AOC concentration of raw feed water was estimated at 158 g/L acetate-C. After pretreatment(acid and antiscalant addition), AOC levels increased by 12.7%, suggesting that pretreatment chemicals used to control scaling may deteriorate feed water biostability. The results also demonstrated that nanofiltration was capable of effectively removing 63.4% of AOC and 94.8% of DOC from the raw water. AOC rejection in stage 1 (${\approx}\;68%$) was slightly higher than that of stage 2 (${\approx}\;58%$) indicating that AOC was removed less at the solution environment (i.e. low pH, high ionic strength and high hardness), which was often created in the $2^{nd}$ stage of full-scale membrane plants due to pretreatment (acid addition) and high recovery operation.

Geochemical Experiment for Effective Treatment of Abandoned Mine Wastes (광산폐석의 효과적 처리를 위한 지화학적 연구)

  • 이진국;이재영
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.31-44
    • /
    • 1998
  • The geochemical experiments were carried out to investigate a removal effect of heavy metals in abdndoned metallic mine wastes, and to conceive a treatment techniques of them. In order to prevent contamination, experiment appature was made of acrylic acid resin and polyethylene which resist to acid and alkali. Experiment models are devided into four groups based on the system environments, distribution patterns and a kind of filling materials. The first group is background model(model I ) which is filled with waste only and opened to air. The second one is four layer group which is subdivided into two models, opened and closed systems, and the third mix group which is subdivided into three models based on mixing ratio of filling materials and system environment like a layered group. The forth is composed of two layer model, lower one composed of waste and upper one limestone chips. Solution drained from Model Ishows a high contents of heavy metals on the all terms of experiments. Among the models, however, the closed mix model V and Ⅶ show the most effective removal of heavy metals liberated from wastes. Models having different mixing ratios of filling materials on closed systems does not affect in heavy metal removal effect. But, the distribution patterns of filling materials affect very much on removal effect of heavy metals. The closed models with same constitution ratios and distribution patterns of filling materials show more and less effective removal to the open models.

  • PDF

Nutrient Balance during Rice Cultivation in Sandy Soil affected by the Fertilizer Management (사질논에서 벼 재배기간 중 시비방법별 양분수지)

  • Roh, Kee-An;Ha, Ho-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.155-163
    • /
    • 1999
  • Nutrient balance during rice cultivation in the paddy of a local area under the environmental protection for drinking water supply was investigated. To compare nutrient balance in the paddy soil applied with different types of fertilization, 7 treatments were selected as followings : Recommended level of chemical fertilizers(R), Conventional fertilization(CF), Fresh cow manure(FCM), Cow manure compost(CMC), Straw compost+reduced chemical fertilizer(SCF), Fresh straw+recommended level of fertilizers(FSC), and no fertilization as control(C). Here, FCM, CMC and SCF were applied at the same level of total nitrogen as recommended in R. Rice yield was the highest in the recommendation(R) and fresh cow manure (FCM) treatments with $6,730kg\;ha^{-1}$(index 100), and followed by SCF (index 98), FSC (index 98), CMC(index 94), and CF(index 94). But statistically significant difference was not recognized among treatments except the control. Nitrogen infiltration loss was high in the simple chemical fertilizer treatments with $63kg\;ha^{-1}$ in CF and $58kg\;ha^{-1}$ in R during rice cultivation, respectively. Nitrogen infiltration loss was decreased below half level of chemical fertilizer treatments with cow manure treatments ($23kg\;ha^{-1}$ in FCM and $27kg\;ha^{-1}$ in CMC) and with reducing chemical fertilizer treatment by adding straw compost ($25kg\;ha^{-1}$). Phosphate was not leached during rice cultivation in paddy soil of a fluvial deposit type, in which oxidation horizon was developed broadly under around 15 cm depth of surface soil. Phosphate balance (A-B) was closed to 0 in all treatments except cow manure treatment (CMC), in which it was $+30kg\;ha^{-1}$ and show the possibility of over accumulation of phosphate by continuously replicated application of cow manure compost. Potassium balance was negative value in all but straw recycling treatment (FSC). It means that potassium was continuously supplied from soil minerals, uptaken by plants or eluted out of soil. In conclusion, by substituting inorganic fertilizer for organic fertilizer or reducing application rate of chemical fertilizer through mixing organic fertilizer, it would be possible to achieve the same rice yield as in the recommendation treatment and to decrease nutrient leaching below half level in rice paddy soil.

  • PDF

Innovative Technology of Landfill Stabilization Combining Leachate Recirculation with Shortcut Biological Nitrogen Removal Technology (침출수 재순환과 생물학적 단축질소제거공정을 병합한 매립지 조기안정화 기술 연구)

  • Shin, Eon-Bin;Chung, Jin-Wook;Bae, Woo-Keun;Kim, Seung-Jin;Baek, Seung-Cheon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1035-1043
    • /
    • 2007
  • A leachate containing an elevated concentration of organic and inorganic compounds has the potential to contaminate adjacent soils and groundwater as well as downgradient areas of the watershed. Moreover high-strength ammonium concentrations in leachate can be toxic to aquatic ecological systems as well as consuming dissolved oxygen, due to ammonium oxidation, and thereby causing eutrophication of the watershed. In response to these concerns landfill stabilization and leachate treatment are required to reduce contaminant loading sand minimize effects on the environment. Compared with other treatment technologies, leachate recirculation technology is most effective for the pre-treatment of leachate and the acceleration of waste stabilization processes in a landfill. However, leachate recirculation that accelerates the decomposition of readily degradable organic matter might also be generating high-strength ammonium in the leachate. Since most landfill leachate having high concentrations of nitrogen also contain insufficient quantities of the organic carbon required for complete denitrification, we combined a shortcut biological nitrogen removal (SBNR) technology in order to solve the problem associated with the inability to denitrify the oxidized ammonium due to the lack of carbon sources. The accumulation of nitrite was successfully achieved at a 0.8 ratio of $NO_2^{-}-N/NO_x-N$ in an on-site reactor of the sequencing batch reactor (SBR) type that had operated for six hours in an aeration phase. The $NO_x$-N ratio in leachate produced following SBR treatment was reduced in the landfill and the denitrification mechanism is implied sulfur-based autotrophic denitrification and/or heterotrophic denitrification. The combined leachate recirculation with SBNR proved an effective technology for landfill stabilization and nitrogen removal in leachate.