• Title/Summary/Keyword: groundwater treatment

Search Result 472, Processing Time 0.023 seconds

지중오존산화시 토양유기물질과 수분이 토착미생물의 생존과 재성장에 미치는 영향

  • 손규동;정해룡;최희철;김수곤;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.334-337
    • /
    • 2003
  • This study was carried out to investigate the effect of soil properties, such as soil organic matter(SOM) content and water content on die-off and regrowth of indigenous microbes due to in-situ ozonation. Four different soils were collected and the soil samples applied to different ozonation time(0-360 min) were incubated during 4 weeks. Population of the indigenous microbes was monitored during incubation period. The number of indigenous microbes in all samples dramatically decreased (more than 90%) within 30 minutes of ozone injection. With increased ozonation time by 360 minutes, the number of the indigenous microbes decreased by 99.99% in all samples. Die-off of the indigenous microbes due to ozone treatment was inversely proportional to SOM and water content. Especially, sample 3 and Sample 4 containing relatively high SOM content and water content showed high regrowth rate, and this resulted from the increase of water soluble and biodegradable organic fraction in soil water after ozone treatment. Soil sample ozonated for 360 minutes showed minor increase in microbial population during 4 weeks of incubation period.

  • PDF

토양 유기물 분리 처리 방법이 비친수성 오염물질 흡착에 미치는 영향

  • Jeong Sang-Jo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.42-45
    • /
    • 2005
  • Accurate prediction of the fate and transport of contaminants in soils and sediments is very Important to environmental risk assessment and effective remediation of contaminated soils and sediments. The fate and transport of contaminants in subsurface are affected by geosorbents, especially carbonaceous materials including black carbon. Various physical and chemical treatment methods have been developed to separate different kinds of carbonaceous materials from soils and sediments. However, the effects of these separation methods on the properties of remaining carbonaceous materials including sorption capacity and linearity are unclear. The objective of this study is to determine if the chemical and thermal treatment methods previously used to separate different carbonaceous material fractions affect the properties of carbonaceous materials including longer term sorption capacity of hydrophobic organic contaminants. The results indicate that treatments with hydrochloric acid (HCl)/hydrofluoric acid (HF), trifluoroacetic acid (TFA), sodium hydroxide (NaOH) may not affect the sorption capacity of black carbon reference materials such as char and soot, however, treatments with acid dichromate $(K_2Cr_2O_7/H_2SO_4)$ and heat $(375^{\circ}C)$ for 24 hours in sufficient of oxygen) decrease the sorption capacity of them. The results of longer term sorption isotherm indicate that 2 days might be enough for trichloroethene (TCE) to equilibrate apparently with treated black carbon reference materials. The results suggest that acid dichromate and heat treatments may not appropriate method to investigate sorption properties of black carbon in soils and sediments.

  • PDF

Analysis of Soil Properties and Microbial Communities for Mine Soil Vegetation (폐광산지역 토양 식생복원 과정 내 토양특성 및 미생물 군집 변화 분석)

  • Park, Min-Jeong;Yoon, Min-Ho;Nam, In-Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.83-91
    • /
    • 2015
  • Mine soil contamination by high levels of metal ions that prevents the successful vegetation poses a serious problem. In the study presented here, we used the microbial biocatalyst of urease producing bacterium Sporosarcina pasteurii or plant extract based BioNeutro-GEM (BNG) agent. The ability of the biocatalysts to bioremediate contaminated soil from abandoned mine was examined by solid-state composting vegetation under field conditions. Treatment of mine soil with the 2 biocatalysts for 5 months resulted in pH increase and electric conductivity reduction compared to untreated control. Further analyses revealed that the microbial catalysts also promoted the root and shoot growth to the untreated control during the vegetation treatments. After the Sporosarcina pasteurii or plant extract based BNG treatment, the microbial community change was monitored by culture-independent pyrosequencing. These results demonstrate that the microbial biocatalysts could potentially be used in the soil bioremediation from mine-impacted area.

Field-Scale Treatment of Acid Mine Drainage by Hybrid Electrolysis Process (전기분해 복합공정을 이용한 산성광산배수 실증처리 연구)

  • Sung, Il-Jong;Pak, Seung-Il;Yang, Jae-Kyu;Bae, Se-Dal;Jin, Hai-Jin;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.142-152
    • /
    • 2014
  • In this study, generic characteristics of the acid mine drainage (AMD), removal efficiency of iron, aluminium and manganese by chemical treatment, electrolysis and hybrid process using electrolysis after neutralization were evaluated. The pH of AMD was inversely proportional to the rainfall. In dry-season, the average pH of AMD was ranged from 4.5 to 5.5, showing slight variation. However, the pH of AMD was gradually decreased along with rainfall and dropped to 3.02 in September showing the greatest rainfall. Removal efficiency of heavy metals by chemical treatments using three different neutralizing agents or by electrolysis was low. However, a hybrid process performed with electrolysis after addition of neutralization shows higher removal capacity for heavy metal ions than neutralization-alone and electrolysisalone process.

A Study on Treatment of a Contaminated Soil by Oil using Continuous System of High Temperature Heating Element and Microwave (마이크로웨이브와 고온발열체를 이용한 연속식 공정의 유류오염토양 처리에 관한 연구)

  • Ha, Sang-An;You, Mi-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.1
    • /
    • pp.8-12
    • /
    • 2012
  • This study is maintains the condition of high temperature (above $600^{\circ}C$) within a short time using on microwave and high temperature heating elements. And removal characteristics according to changes in soil moisture, microwave power and temperature through the decomposition of the contaminated soil by oil. The difficulty resolvability material was sort of lubricating oil having long carbocyclic (C18-C50) and TPH removal rate reached 85.2% at 6 kW and $700^{\circ}C$ and thus the contaminant was removed 1,788 mg/kg within a process time of 40 minutes. In the case of light oil, gasoline contaminated soil, the removal amount showed 567 mg/kg and the treatment rate reached 98.4% at 6 kW, $500^{\circ}C$ and 20 minute. In the case of non-resolvability reached TPH concentrations on 2,000 mg/kg of worrisome level of soil contamination in the 3 zones at 6 kW, $700^{\circ}C$ and 30 minute. At the time, showed up processing costs 8,173 won per ton.

Long Term Affecting Factors on Major Water Quality Items of Landfill Leachate (매립장 침출수 주요 수질항목에 대한 장기 영향요소)

  • Chun, Seung-Kyu;Kim, Min Hyuk;Won, Jong Chul
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.1
    • /
    • pp.24-33
    • /
    • 2021
  • Analysis of long term affecting factors on water quality items of gas emission form (BOD, COD) and leachate emission form (T-N, non-bio-degradable COD (NBDCOD)) was performed for the SUDOKWON 1st Landfill Site (LS1) and 2nd Landfill Site (LS2). As landfill gas was generated, BOD and COD decreased from 6,887 and 20,025 mg/L in 1993 to 49.5 and 670.2 mg/L in 2019, respectively. TN and NBDCOD increased with waste decomposition but gradually decreased after landfill closure because of the precipitation infiltration effect. Due to the drastic decline of carbon in the leachate, the BOD/TN ratios of LS1 and LS2 declined from 13.0 and 17.0 during early stage of the landfill to 0.07 and 0.16 in 2019, respectively; LS2 and NBDCOD/COD increased from 0.25 to 0.65 during the same period. These conditions caused carbon deficiency in denitrification treatment and a chemical post-treatment request for NBDCOD. The different behaviors of gas emission and leachate emission items suggest the necessity of different strategic approaches in the long term perspective.

In-situ Stabilization of Hydrophobic Organic Contaminants in Sediment by Activated Carbon Amendment: Working Principles (활성탄 주입을 통한 퇴적물 내 소수성 유기오염물질 원위치 안정화 기술: 작동 원리)

  • LEE, Hyeonmin;JUNG, Jihyeun;CHOI, Yongju
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • In-situ activated carbon (AC) amendment is a promising remediation technique for the treatment of sediment impacted by hydrophobic organic contaminants (HOCs). Since its first proposal in the early 2000s, the remediation technique has quickly gained acceptance as a feasible alternative among the scientific and engineering communities in the United States and northern Europe. This review paper aims to provide an overview on in-situ AC amendment for the treatment of HOC-impacted sediment with a major focus on its working principles. We began with an introduction on the practical and scientific background that led to the proposal of this remediation technique. Then, we described how the remediation technique works in a mechanistic sense, along with discussion on two modes of implementation, mechanical mixing and thin-layer capping, that are distinct from each other. We also discussed key considerations involved in establishing a remedial goal and performing post-implementation monitoring when this technique is field-applied. We concluded with future works necessary to adopt and further develop this innovative sediment remediation technique to ongoing and future sediment contamination concerns in Korea.

A Study on Magnetization of Layered Metal Sulfide for the Removal of Cesium Ions from Aqueous Solution (수중 세슘 제거를 위한 층상 황화 금속 물질 자성화 연구)

  • Chul-Min Chon;Jiwon Park;Jungho Ryu;Jeong-Yun Jang;Dong-Wan Cho
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.4
    • /
    • pp.1-5
    • /
    • 2023
  • In the fabrication of magnetic adsorbent by incorporating iron species on base materials with layered structure, there can be a potential loss of adsorption capacity from the penetration of dissolved iron species into the structure. This work newly synthesized a magnetic adsorbent by incorporating nano magnetite and glucose into layered metal sulfide via hydrothermal treatment, and tested the removal efficiencies of cesium ions (Cs+) by the adsorbents fabricated under different conditions (final temperature and glucose mass ratio). As a result, the optimal fabrication condition was found to be mass ratio of 1 (layered metal sulfide): 0.1 (nano magnetite): 0.4 (glucose) and final temperature of 160℃. As-prepared adsorbent possessed good adsorption ability of Cs+ (54.8 mg/g) without a significant loss of adsorption capacity from attaching glucose and nano magnetite onto the surface.

Treatment Performance and Microbial Community Structure in BAC-process Treating Contaminated Groundwater by Water-soluble Cutting Oil (생물활성탄을 이용한 절삭유로 오염된 지하수의 처리특성과 미생물군집구조 해석)

  • Lim Byung-Ran;Bae Ci Ae;Lim Ho-Ju;Cho Chang-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.1 s.88
    • /
    • pp.71-76
    • /
    • 2006
  • Treatment performance and microbial community structure were investigated in water-soluble cutting oil treatment process using biological activated carbon. DOC removal in BACI column at $15^{\circ}C$ was higher than at $25^{\circ}C$, but those of BAC3 column after 60days was high at$25^{\circ}C$. Also, quinone content of first-step reactors at $25^{\circ}C$ and $15^{\circ}C$ was much the same, but those of the third-step reactor at $25^{\circ}C$ was higher than at $15^{\circ}C$. The dominant type of two apparatus was ubquinone (UQ)-l 0 followed by UQ-8. Menaquinones were detected from $25^{\circ}C$ apparatus and effluent. This suggested that DOC removal at $25^{\circ}C$ was advanced degradation by attached microorganisms on the activated carbon surface. The DOC removal in long-term activated carbon apparatus increased with going in BAC3 column. This indicated the influent of POC was a result of DOC removal efficiency decrease. Integrated DOC removal from start point in experiment to break point and quinone content were showed a tendency of increasing with going last-step activated carbon apparatus. Therefore, the biological activated carbon apparatus used by this study was effective treatment process in contaminated groundwater by water-soluble cutting oil.

A Study on Treatment of Acid Mine Drainage Using an Cow Manure and Spent Oak (우분과 참나무 폐목을 이용한 산성광산배수의 처리에 관한 연구)

  • An, Jong-Man;Lee, Hyun-Ju;Kim, Ki-Ho;Lee, Yong-Bok;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.2
    • /
    • pp.52-60
    • /
    • 2011
  • Although facilities for the passive treatment of AMD (Acid Mine Drainage) are currently operating in Korea, their removal efficiency for heavy metals is relatively low in average (only 80%). Passive treatment system is composed of oxidation tank, SAPS (Successive Alkalinity Producing System), and wetland. In the treatment system adopted in korea, SAPS (Successive Alkalinity Producing System) plays a major role to remove about 65% of heavy metals through a precipitation. However, the efficiency of SAPS is limited due to the use of mushroom compost (MC) as a organic material and of limestone as a neutralizer. Therefore, this research was performed to search for alternative organic materials through the field test. We tested two types of mixed organic materials: 1) cow manure and spent oak (herein, CO) and 2) cow manure and sawdust (herein, CS). For comparison mushroom compost (herein, MC) was also tested. The result showed that the average Fe removal efficiency was 91.38% with CO, 85.19% with CS, and 91.58% with MC. Thus, CO can be effectively used as an alternative of MC in the SAPS system for heavy metals removal.