• Title/Summary/Keyword: groundwater quality

Search Result 617, Processing Time 0.027 seconds

Feasibility test for Solidified Fuel with Cow Manure (고체연료화 방법을 적용한 우분 처리 가능성 평가)

  • Jeong, Kwang-Hwa;Kim, Jung-Kon;Lee, Dong-Jun
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.112-119
    • /
    • 2017
  • In this study, the availability of cow manure as raw material for solid fuel production was investigated. Since the water content of the cow manure was too high, it was dewatered using a laboratory hydraulic compressure ($11.3kg/cm^2$). The moisture content of the cow manure decreased from 82.01% to 73.36 wt.%. The dewatered cow manure was homogenized by the experimental apparatus and then put into the rotating cylindrical apparatus. From the consecutive processes, the cow ball-shaped pellet which size ranged from 3.0 to 25.0 mm was produced. The major factor for making palletized fuel from cow manure was the moisture content. Based on the experimental data, the moisture content of cow manure for pelletizing cow manure was identified as 65~75 wt.%. When the moisture content of the cow manure was lower than 30 wt.%, the diameter of the pellets maded from cow manure was smaller than 3 mm. On the other hand, when the water content of the cow manure was higher than 75 wt/%, the diameter of the processed pellets tended to be larger than 25 mm. The characteristics of the processed cow manure pellets was analyzed to be in accordance with the livestock solid fuel quality standard. The pyrolysis characteristic of the pellet was analyzed by raising the heating temperature of the experimental equipment from 200 to $900^{\circ}C$. The mass change between of 20 and $130^{\circ}C$ corresponds to the amount of moisture contained in the cow manure. The amount of moisture was about 15% of the total weight of cow manure samples. The cow manure pellet was thermally stable up to $280^{\circ}C$. It can be interpreted that combustion of cow manure pellet does not occur until the surface temperature reaches $280^{\circ}C$. The mass change of pellet between of 280 and $450^{\circ}C$ was considered to be due to the vaporization of volatile organic compounds (VOCs) present in the cow manure pellet. The maximum production of VOCs was showed near $330^{\circ}C$.

Estimating of the Greenhouse Gas Mitigation and Function of Water Resources Conservation through Conservation of Surface Soils Erosion and Policy Suggestion (표토유실 보전을 통한 온실가스배출 저감과 수자원 보전 기능의 산출 및 정책제안)

  • Oh, Seung-Min;Kim, Hyuck Soo;Lee, Sang-Pil;Lee, Jong Geon;Jeong, Seok Soon;Lim, Kyung Jae;Kim, Sung-Chul;Park, Youn Shik;Lee, Giha;Hwang, Sang-Il;Yang, Jae-E
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.74-84
    • /
    • 2017
  • Soil erosion is often extreme in Korea due to high rainfall intensities and steep slopes, and climate change has also increased the risk of erosion. Despite its significane, erosion-induced soil organic carbon (SOC) emission and water resource loss are not well understood, along with the lack of an integrated surface soil erosion protection policy. Therefore, to design adequate protection policies, land users, scientists, engineers and decision makers need proper information about surface soil and watershed properties related to greenhouse gas emission potential and water conservation capability, respectively. Assuming the total soil erosion of $346Tg\;yr^{-1}$, soil organic matter (SOM) content of 2% (58% of SOM is SOC), and mineralization rate of 20% of the displaced carbon, erosion-induced carbon emission could reach $800Gg\;C\;yr^{-1}$. Also the available water capacity of the soil was estimated to be 15.8 billion tons, which was 14 times higher than the yearly water supply demand in Seoul, Korea. Therefore, in order to prevent of soil erosion, this study proposes a three-stage plan for surface soil erosion prevention: 1) classification of soil erosion risk and scoring of surface soil quality, 2) selection of priority areas for conservation and best management practices (BMP), and 3) application of BMP and post management.

Investigation of Microbial Safety and Correlations Between the Level of Sanitary Indicator Bacteria and the Detection Ratio of Pathogens in Agricultural Water (농업용수의 미생물학적 안전성 조사 및 위생지표세균 농도와 병원성미생물 검출률과의 상관관계 분석)

  • Hwang, Injun;Lee, Tae Kwon;Park, Daesoo;Kim, Eunsun;Choi, Song-Yi;Hyun, Jeong-Eun;Rajalingam, Nagendran;Kim, Se-Ri;Cho, Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.248-259
    • /
    • 2021
  • BACKGROUND: Contaminated water was a major source of food-borne pathogens in various recent fresh produce-related outbreaks. This study was conducted to investigate the microbial contamination level and correlations between the level of sanitary indicator bacteria and the detection ratio of pathogens in agricultural water by logistic regression analysis. METHODS AND RESULTS: Agricultural water was collected from 457 sites including surface water (n=300 sites) and groundwater (n=157 sites) in South Korea from 2018 to 2020. Sanitary indicator bacteria (total coliform, fecal coliform, and Escherichia coli) and food-borne pathogens (pathogenic E. coli, E. coli O157:H7, Salmonella spp., and Listeria monocytogenes) were analyzed. In surface water, the coliform, fecal coliform, and E. coli were 3.27±0.89 log CFU/100 mL, 1.90±1.19 log CFU/100 mL, and 1.39±1.26 log CFU/100 mL, respectively. For groundwater, three kinds of sanitary indicators ranged in the level from 0.09 - 0.57 log CFU/100 mL. Pathogenic E. coli, Salmonella and Listeria monocytogenes were detected from 3%-site, 1.5%- site, and 0.6%-site water samples, respectively. According to the results of correlations between the level of sanitary indicator bacteria and the detection ratio of pathogens by logistic regression analysis, the probability of pathogen detection increased individually by 1.45 and 1.34 times as each total coliform and E. coli concentration increased by 1 log CFU/100mL. The accuracy of the model was 70.4%, and sensitivity and specificity were 81.5% and 51.7%, respectively. CONCLUSION(S): The results indicate the need to manage the microbial risk of agricultural water to enhance the safety of fresh produce. In addition, logistic regression analysis is useful to analyze the correlation between the level of sanitary indicator bacteria and the detection ratio of pathogens in agricultural water.

Trend Analysis of Earthquake Researches in the World (전세계의 지진 연구의 추세 분석)

  • Yun, Sul-Min;Hamm, Se-Yeong;Jeon, Hang-Tak;Cheong, Jae-Yeol
    • Journal of the Korean earth science society
    • /
    • v.42 no.1
    • /
    • pp.76-87
    • /
    • 2021
  • In this study, temporal trend of researches in earthquake with groundwater level, water quality, radon, remote sensing, electrical resistivity, gravity, and geomagnetism was searched from 2001 to 2020, using the journals indexed in Web of Science, and the number of articles published in international journals was counted in relation to the occurrences of earthquakes (≥Mw 5.0, ≥Mw 6.0, ≥Mw 7.0, ≥Mw 8.0, and ≥Mw 9.0). The number of articles shows an increasing trend over the studied period. This is explained by that studies on earthquake precursor and seismic monitoring becomes active in various fields with integrated data analysis through the development of remote sensing technology, progress of measurement equipment, and big data. According to Mann-Kendall and Sen's tests, gravity-related articles exhibit an increasing trend of 1.30 articles/yr, radon-related articles (0.60 articles/yr), groundwater-related articles (0.70 articles/yr), electrical resistivity-related articles (0.25 articles/yr), and remote-sensing-related articles (0.67 articles/yr). By cross-correlation analysis of the number of articles in each field with removing trend effect and the number of earthquakes of ≥Mw 5.0, ≥Mw 6.0, ≥Mw 7.0, ≥Mw 8.0, and ≥Mw 9.0, radon and remote sensing fields exhibit a high cross-correlation with a delay time of one year. In addition, large-scale earthquakes such as the 2004 and 2005 Sumatra earthquake, the 2008 Sichuan earthquake, the 2010 Haiti earthquake, and the 2010 Chile earthquake are estimated to be related with the increase in the number of articles in the corresponding periods.

A Study on Application of Improved Tunnel Water-Sealing Grouting Construction Process and the Inverse Analysis Material Selection Method Using the Injection Processing Results (개선된 터널 차수그라우팅 시공 프로세스 적용 및 그 주입시공결과를 이용한 역해석 재료선정방법 연구)

  • Kim, Jin Chun;Yoo, Byung Sun;Kang, Hee Jin;Choi, Gi Sung;Kim, Seok Hyun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.101-113
    • /
    • 2022
  • This study is planned with the aim of developing a systematic construction process based on the scientific and engineering theory of the water-sealing grouting construction applied to the tunnel excavation process during the construction of the downtown underground traffic network, so that the construction quality of the relatively backward domestic tunnel water-sealing grouting construction is improved and continuously maintained no matter who constructs it. The main contents of the improved tunnel water-sealing grouting can be largely examined in the classification of tunnel water-sealing grouting application and the definition of grouting materials, the correlation analysis of groundwater pressure conditions with groundwater inflow, the study of the characteristic factors of bedrock, and the element technologies and injection management techniques required for grouting construction. Looking at the trends in global research, research in the field of theoretical-based science and engineering grouting is actively progressing in Nordic countries (Sweden, Finland, Norway, etc.), Japan, Germany, and the United States. Therefore, in this study, the algorithm is established through theoretical analysis of the elements of tunnel water-sealing grouting construction techniques to provide an integrated solution including a construction process that can effectively construct tunnel water-sealing grouting construction.

Monitoring of Groundwater quality according to groundwater use for agriculture (농업용 지하수 사용에 따른 지하수질 모니터링 평가)

  • Ha, Kyoochul;Ko, Kyung-Seok;Lee, Eunhee;Kim, Sunghyun;Park, Changhui;Kim, Gyoo-Bum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.30-30
    • /
    • 2020
  • 본 연구에서는 여름철에 농업용수(벼농사용)로서 집중적으로 지하수를 사용하는 지역에서 시기별 지하수 사용에 따른 지하수 수질변화를 평가하기 위해 수행되었다. 연구지역은 충남 홍성군 양곡리와 신곡리 일부를 포함하는 면적 2.83 ㎢(283.3 ha)에 해당하는 지역이다. 연구지역 지하수 수질의 공간적 분포 및 시간적 변화 특성 평가를 위하여 2019년 2회(7월, 10월)에 걸쳐 지하수 관정(21개소)에 대하여 조사 및 분석을 수행하였다. 지하수 샘플은 현장에서 온도(T), pH, 용존산소(DO) 및 전기전도도(EC), 산화환원전위(Eh) 등을 측정하였고, 실험실에서 주요 양이온 및 미량원소(Ca, Mg, Na, K, Si, Sr), 음이온(F, Cl, Br, NO2, NO3, PO4, SO4), 알칼리도, 용존 유기탄소(DOC)와 용존 유기물(DOM) 등을 분석하였다. 지하수 수질조사 결과, 전체의 14~15개소(67~71%)가 Ca-HCO3 유형으로 분류되었으며, 다음으로는 Ca-Cl 유형이 4~5개소(19~24%)가 관찰되었다. 얕은 심도의 관정에서 상대적으로 심도가 깊은 관정보다 대부분 성분(TDS, Ca, Mg, Na, K, Cl, SO4, HCO3, DOC)에서 높은 농도를 나타내었다. 지하수의 수질자료를 이용하여 다변량통계분석법인 주성분분석(PCA: Principal Components Analysis)과 계층적 군집분석(HCA: Hierachical Cluster Anlaysis)를 수행한 결과, 초기 3개 주요 고유성분(eigenvalue)는 PC1 54.0%, PC2 14.2%, PC3 12.3%로 전체 분산의 88.3%를 설명할 수 있었다. PC1은 Ca, Mg, Na, K, Cl, SO4, DOC가 주요한 영향 인자였으며 PC2는 HCO3, NO3, DO에 영향 받음을 확인하였다. 계층적 군집분석 결과, 연구지역 지하수는 Na-Cl 유형의 C-3 관정을 제외하고는 크게 두 그룹으로 구분되어 졌다. 다변량통계분석의 결과에서도 수리지화학, 동위원소, 용존유기물 등의 특성에서 나타나는 것과 유사한 연구지역의 수질특성을 확인할 수 있었다. 연구지역은 차시기 동안 수질변화는 일부 관정을 제외하고는 유의할 만한 수준으로 관찰되지는 않았고, 지하수 사용에 따른 지하수위 회복도 빠르게 진행되고 있는 것으로 나타났다.

  • PDF

A study on the fixation of heavy metals with modified soils in the landfill liner (개량혼합토를 이용한 폐기물 매립지 차수층의 중금속 고정능력에 관한 연구)

  • 노회정;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.63-71
    • /
    • 2002
  • The authors selected the modified soil method, and then performed the geotechnical and environmental laboratory test, and evaluated whether the modified soil liner could be accepted as a barrier layer in landfill. Unlike the results of the natural soil(CL), those of the hydraulic conductivity test of stabilized soil met the standard value. According to these results, the optimal mixing ratio of a mixture(cement : bentonite : stabilizing agent) was 90 : 60 : 1 with mass ratio(kg) for 1㎥ with soil, and it was possible to use poor quality bentonite. B\circled2 because of a little difference from results with high quality bentonite. B\circled1. The Cation Exchange Capacity(CEC) of the modified soil was increased about 1.5 times compared with the natural soil; however. the change of CEC with a sort of additives was not detected. In order to observe the change of the chemical components and crystal structures, the natural and the modified soils with the sorts of additives were measured by the XRF(X-Ray Flourescence Spectrometer) and SEM, but there was no significant change. The artificial leachate with the heavy meals ($Pb^{2+}$ , $Cu^{2+}$, $Cd^{2+}$ Zn$^{2+}$ 100mg/L) was passed through the natural soil and modified soils in columns. In the natural soil, Cd$^{2+}$ and $Zn^{2+}$ were identified, simultaneously the pH of outflow was lower, and then came to the breakthrough point. The removal efficiency of the natural soil was showed in order of following : $Pb^{2+}$$Cu^{2+}$ > $Zn^{2+}$ > $Cd^{2+}$ On the other hand, modified soils were not showed the breakthrough condition like the result of the natural soil. The modified soil with the lower quality bentonite, B\circled2(column3) was more stable with respect to chemical attack than that with the higher bentonite, B\circled1(column2) because the change range of outflow pH in columns was less than that of outflow pH in column2. In addition, the case of adding the stabilizing agent(column4) was markedly showed the phenomena.ena.

Treatment of Contaminated Sediment for Water Quality Improvement of Small-scale Reservoir (소하천형 호수의 수질개선을 위한 퇴적저니 처리방안 연구)

  • 배우근;이창수;정진욱;최동호
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.31-39
    • /
    • 2002
  • Pollutants from industry, mining, agriculture, and other sources have contaminated sediments in many surface water bodies. Sediment contamination poses a severe threat to human health and environment because many toxic contaminants that are barely detectable in the water column can accumulate in sediments at much higher levels. The purpose of this study was to make optimal treatment and disposal plan o( sediment for water quality improvement in small-scale resevoir based on an evaluation of degree of contamination. The degree of contamination were investigated for 23 samples of 9 site at different depth of sediment in small-scale J river. Results for analysis of contaminated sediments were observed that copper concentration of 4 samples were higher than the regulation of hazardous waste (3 mg/L) and that of all samples were exceeded soil pollution warning levels for agricultural areas. Lead and mercury concentration of all samples were detected below both regulations. Necessary of sediment dredge was evaluated for organic matter and nutrient through standard levels of Paldang lake and the lower Han river in Korea and Tokyo bay and Yokohama bay in Japan. The degree of contamination for organic matter and nutrient was not serious. Compared standard levels of Japan, America, and Canada for heavy metal, contaminated sediment was concluded as lowest effect level or limit of tolerance level because standard levels of America and Canada was established worst effect of benthic organisms. The optimal treatment method of sediment contained heavy metal was cement-based solidification/stabilization to prevent heavy metal leaching.

Characteristic Distributions of Nutrients and Water Quality Parameters in the Vicinity of Mokpo Harbor after Freshwater Inputs (담수 유입에 따른 목포항 주변해역의 영양염 및 수질인자 분포 특성)

  • Kim, Yeong-Tae;Choi, Yoon-Seok;Cho, Yoon-Sik;Choi, Yong Hyeon;Jeon, Seungryul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.617-636
    • /
    • 2015
  • The Mokpo coastal waters receive discharges from three artificial lakes(Youngsan, Youngam, Geumho) and other terrigenous freshwater inflows(streams, sewage treatment effluent, fresh groundwater), which exhibit very high concentrations of nutrients and/or organic matters. To understand spatial distributions of nutrients(DIN, DIP, DSi) and other water quality parameters(Chl-a, water temperature, salinity, DO, COD, SS), field surveys were conducted at 10 stations in the Mokpo harbor and adjacent estuaries on May, July, September, and November 2008 within 10 days following discharge events from artificial lakes. In this study, the freshwater flow rate influxed by the operation of sea dike sluice had significant influence on water qualities of the Mokpo coastal waters, although nutrient concentrations in other freshwater sources such as streams, sewage treatment effluent, and fresh groundwater were much higher. As a result of statistical analysis, DIN, COD, and Chl-a had a negative correlation with salinity. Therefore it was shown that discharge extents, time, and nutrients from the Youngsan lake were major impact factors dominating the spatial characteristics of nutrients and other water quality parameters in the Mokpo harbor and adjacent waters. However, despite non-discharge from the Youngsan Lake on September of this investigated period, it was observed that the nutrient addition was taking place in the lower layer of the estuary suggesting nutrient supply through different pathways. This result has emphasized the need to implement the combined assessment about the cumulative impacts on the Youngsan Estuary environment and ecosystem due to freshwater inputs derived from the artificial lakes as well as other terrigenous inflows, or benthic releases.

The impact of anthropogenic factors on changes in discharge and quality of water in the Hadano basin, Japan (인위적인 요인이 하천의 유량과 수질변화에 미친 영향 - 일본 하다노 분지를 사례 로 -)

  • ;Yang, Hea-Kun
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.3
    • /
    • pp.242-254
    • /
    • 1995
  • The Hadano Basin is located at a distance of about 70kms and 60kms from Tokyo and Yokohama and lies in the south-west part of the Kanto region in Japan. The basin area, which correspoends to the catchment of the Kaname River, is about areal size of 60.7$\textrm{km}^2$ and extends about length of 8kms in E-W direction and about width of 5kms in N-S direction (Fig.1). The Hadano basin is filled with thick pile of the alluvum from deposits composed of volcanic materials, mostly came from the Hakone Volcano and overlain by Fuji Volcanic ashes. Fluvial deposits form the good aquifer, therefore water resources of Handano City has been largely depending upon the eroundwater. Urbanization and industrialization of the basin has been rapid in the last thirty years, after activation of "Factory Attraction Policy of Hadano City" in 1956. Growth in population and number of factory due to urbanization changed the land-use pattern of the basin rapidly and increased the water demands. Therefore, Hadano City exploited a new source of water supply, and have introduced the prefectureal waterworks since 1976. On the other hand, the rapid urbanization has brought about the pollution of streams in the basin by domestic sewage and industrial waste water. Diffusion rate of sewerage systems in Hadano City is 38% in 1993. In ordcr to examine the impact of anthropogenic factors on river environments, the author took up the change of land-use and diffusion area of sewerage as parameters, and performed field surveys on water discharge and quality. The survey has been made at upstream and downstream of the main stream regularly per month, to get informati ons about the variation of discharge and water quality aiong the stream and its diurnal fluctuation. Annual variation has been analyzed based the data from Hadano City Office. The results are summarized as follows. 1. Stream discharge has been increasing by urbanization (Fig.3). Water quality (C $l^{-10}$ , N $H^{+}$$_{ 4}$-N, BOD) has been improving gradually after the application of sewerage service, yet water pollution load at the lower station has increased than that at the upper one because of the larger anthropogenic discharge volumes (Fig.4). 2. Corrclation coefficient of discharges between upper and lower was 0.81-0.92. Pollutant loads of the R. Kamame after the confluence with R. Kuzuha grew up by 2.4-3.7 times as compared with its upper reaches, and it increased to 3.7-6.9 times after the confluence with the R. Muro (Fig.5). 3. The changes of water quality along the stream can be divided into two groups (Fig.6a). First: water quality of the R. Kaname and R. Shijuhachisse is becoming worse towards the lower reaches because the water from branches are polluted. Second: water quality are improved in the lower where spring and small branch streams supply clear water, for example R. Mizunashi, R. Muro and R. Kuzuha. 4. Measured discharge at the upper station in the R. Shijuhachisse is 0.153㎥/sec, and about 55% of this is recharged until it reaches to the lower point. The R. Mizunashi has a discharge of 1.155㎥/sec at the upper point, is recharged 0.24㎥/sec until the midstream and groundwater spring 0.2㎥/sec at the lower reaches. R. Kuzuha recharged all the mountain runoff (0.2㎥/sec) at the upper reaches. The R. Muro is supplied by many springs and the estimated discharge of spring was 0.47㎥/sec (Fig.6b). 5. Diurmal variations in discharge and water quality are influenced clearly by domestic and industrial waste waters (Fig.7, 8).ed clearly by domestic and industrial waste waters (Fig.7, 8).

  • PDF