• Title/Summary/Keyword: groundwater nitrate

Search Result 264, Processing Time 0.022 seconds

Sources and Behaviors of Nitrate and Sulfate in Riverside Alluvial Aquifer

  • Choi Byoung-Young;Yun Seong-Taek;Kim Kyoung-Ho;Kim Kang-Joo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.10a
    • /
    • pp.271-273
    • /
    • 2005
  • The ${\delta}^{15}N\;and\;{\delta}^{15}O$ data of nitrate indicates the sources of nitrate in oxic groundwater as a mixture of ammonia or urea-containing fertilizer and manure. The ${\delta}^{34}S_{sulfate}$ values indicate that sulfate Is mainly originated from fertilizers and soil S. In sub-oxic groundwater, the increased ${\delta}^{34}S_{sulfate}$ values evidently indicate that sulfate is gradually removed by microbial mediated sulfate reduction. However, iron reduction does not occur In this study area. Such a reversed redox sequence may occur In the presence of stable iron oxides such as hematite and goethite in alluvlal aquifer.

  • PDF

Case for Detection and Prevention of Inflow Section for Contaminant through Annular Space in Borehole, Jeju Island (제주도 관정 공벽 내 오염물질 유입 구간 탐지 및 차단 사례)

  • Song, Sung-Ho;Hwangbo, Dongjun;Kim, Jin-Sung;Yang, Won-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.3
    • /
    • pp.1-10
    • /
    • 2022
  • Most wells developed in Jeju island before the enactment of the Groundwater Management Ordinance in 2002 are vulnerable to aquifer contamination due to inflow of upper groundwater having the high concentration of nitrate nitrogen, likely due to incomplete grouting in upper section of the wells. Although these wells require entire reinstallation, it is often necessary to rehabilitate the existing wells due to various constraints. Therefore, to identified the inflow section of contaminants, the thermal level sensor (TLS) technique was firstly applied for three wells, which enables to monitor temperature variations in every 50 cm depth. Then, the grouting material was injected to the upper section to prevent the inflow of upper contaminated groundwater into the entire aquifer. By applying TLS technique, it was found that the temperature deviations in the upper groundwater inflow section decreased sharply. Moreover, both the change in the concentration of nitrate nitrogen in the rainy/dry seasons and the average concentrations were found to decrease rapidly after grouting material injection. Consequently, the application of TLS proposed in the study turned out to be appropriate to prevent aquifer contamination.

Autrophic Denitrification of Bank Filtrate Using Elemental Sulfur (황을 이용한 강변여과수의 독립영양탈질)

  • 문희선;남경필;김재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.209-212
    • /
    • 2000
  • As a bench-scale study, transformation of nitrate to nitrogen gas under anoxic condition was determined by using autotrophic denitrifiers containing Thiobacillus denitrificans and elemental sulfur as an electron donor. The research objective is to measure the basic kinetic parameters of autotrophic denitrification reaction on the removal efficiency of nitrate. The results showed that nitrate was almost completely transformed to nitrite in the first 4 days of column operation. After 2 days of accumulation of nitrite, its concentration slowly decreased and the compound was detected less than 0.5 mg/L in 14 days. In the experiment, sulfate concentration in the effluent was the 70~90 mg-S/L and the pH was maintained around pH 7.5. When nitrate concentration of bank filtrate in the real field is considered, this sulfate concentration seems to be acceptable. At 17 cm from the bottom of the column, the effluent showed the highest nitrite concentration, and nitrate concentration decreased rapidly to the Point of 33 cm from the bottom. The results suggest that an appropriate thickness of permeable reactive barriers is about 30 cm.

  • PDF

Groundwater and Soil Environment of Plastic Film House Fields around Middle Korea (우리나라 중부지방 시설원예지 토양 및 지하수 환경)

  • Kim, Jin-Ho;Ryu, Jong-Soo;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.479-483
    • /
    • 2001
  • This Study was carried out to know the soil properties and the quality of shallow groundwater in the plastic film house fields around mid-Korea. This study was conducted at 11 sites in Suweon, Pyungtaek, Yongin, and Chunchen on May, June, July and August in 1999. The the average concentration of nitrate-nitrogen was 19.1 mg/L, it reached almost to the limiting level, 20 mg/L. Moreover about 36.4% of survey sites exceeded limiting level to agricultural groundwater quality. And Sulfur concentrations also at some sites exceeded to agricultural groundwater quality limit level (50 mg/L), which could make damage to the crop. Nitrate-nitrogen, which is one of the most important factors in the groundwater quality, It has highly positive correlation with any other ion in groundwater. This result showed that groundwater quality management practices should be taken for the agricultural production as well as for environment at the plastic film house areas.

  • PDF

Nitrate Risk Management by Multiobjective Decision-making Technique Using Fuzzy Sets (퍼지이론을 사용한 다기준의사결정기법에 의한 질산의 위해성 관리)

  • Lee, Yong-Woon
    • Journal of Environmental Impact Assessment
    • /
    • v.5 no.1
    • /
    • pp.47-60
    • /
    • 1996
  • Nitrate contamination problems from groundwater supplies have been reported throughout many countries in the world, including Korea. Nitrate salts can induce methemoglobinemia and possibly human gastric cancer. To reduce human health risk from nitrate in groundwater supplies, several nitrate risk-management strategies can be developed based on the acceptable level of human health risk, the reasonableness of nitrate-control cost, and the technical feasibility of nitrate-control methods. However, due to a lack of available information, assessing risk, cost and technical feasibility contains elements of uncertainty. In the present paper, a nitrate risk-management methodology using fuzzy sets in combination with a multiobjective decision-making (MODM) technique is developed to assist decision makers in evaluating, with uncertain information, various nitrate risk-management strategies in order to decide a proper strategy.

  • PDF

경기도 일죽지역 천부지하수의 질산성 질소 오염특성

  • 김연태;신우식;우남칠;이상모
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.215-218
    • /
    • 2002
  • The purposes of this research are to identify the source and the extent of contamination of nitrate in groundwater in a typical agricultural area. The study area has many livestock raising facilities, rice paddies and grape farms. In order to identify the hydrogeological character, we sampled groundwater and surface water in 27 locations and performed chemical analyses. Nitrate-nitrogen is the major contaminant in this area. Approximately 32 ~ 42% of groundwater samples are over the drinking water limit(10 mg/L) and 77% estimated to be entered from artificial sources. The nitrogen isotope analysis indicates animal waste being the major source of nitrate in water samples. Not only presently operating livestock facilities but also abandoned ones influence groundwater quality for a long time.

  • PDF

ZanF를 이용한 질산성 질소 환원 및 암모늄부산물 동시제거

  • 이승학;이광헌;이성수;박준범
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.107-110
    • /
    • 2003
  • Reduction of nitrate by zero valent iron (Fe$^{0}$ ) has been previously studied, but the proper treatment for the by-product of ammonium has not been reported. However, in terms of nitrogen contamination, ammonium may be regarded as another form of nitrogen contaminants since it can be oxidized to nitrate again under aerobic conditions. This study is focused on simultaneous removal of nitrate and its by-product of ammonium, with the ZanF (Zeolite anchored Fe), a product derived from zeolite modified by Fe(II) chloride followed by reduction with sodium borohydride. Batch experiments were performed without buffer at two different pH condition with ZanF, iron filing, Fe(II)-sorbed zeolite, and pure zeolite to estimate the nitrate reduction and the ammonium production. At higher pH, removal rate of nitrate was reduced in both ZanF and iron filings. ZnF removed 60 % of nitrate at initial pH of 3.3 with no production of ammonium, while iron filing showed equivalent production of ammonium to the reduced amount of nitrate. In terms of nitrogen contamination, ZanF removed about 60 % and 40 % at initial pH of 3.3 and 6, respectively, while iron filing presented negligible removal against total nitrogen including nitrate and ammonium.

  • PDF

A Study of Improvement for the Prediction of Groundwater Pollution in Rural Area: Application in Keumsan, Korea (농촌지역 지하수의 오염 예측 방법 개선방안 연구: 충남 금산 지역에의 적용)

  • Cheong, Beom-Keun;Chae, Gi-Tak;Koh, Dong-Chan;Ko, Kyung-Seok;Koo, Min-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.40-53
    • /
    • 2008
  • Groundwater pollution prediction methods have been developed to plan the sustainable groundwater usage and protection from potential pollution in many countries. DRASTIC established by US EPA is the most widely used groundwater vulnerability mapping method. However, the DRASTIC showed limitation in predicting the groundwater contamination because the DRASTIC method is designed to embrace only hydrogeologic factors. Therefore, in this study, three different methods were applied to improve a groundwater pollution prediction method: US EPA DRASTIC, Modified-DRASTIC suggested by Panagopoulos et al. (2006), and LSDG (Land use, Soil drainage, Depth to water, Geology) proposed by Rupert (1999). The Modified-DRASTIC is the modified version of the DRASTIC in terms of the rating scales and the weighting coefficients. The rating scales of each factor were calculated by the statistical comparison of nitrate concentrations in each class using the Wilcoxon rank-sum test; while the weighting coefficients were modified by the statistical correlation of each parameter to nitrate concentrations using the Spearman's rho test. The LSDG is a simple rating method using four factors such as Land use, Soil drainage, Depth to water, and Geology. Classes in each factor are compared by the Wilcoxon rank-sum test which gives a different rating to each class if the nitrate concentration in the class is significantly different. A database of nitrate concentrations in groundwaters from 149 wells was built in Keumsan area. Application of three different methods for assessing the groundwater pollution potential resulted that the prediction which was represented by a correlation (r) between each index and nitrate was improved from the EPA DRASTIC (r = 0.058) to the modified rating (r = 0.245), to the modified rating and weights (r = 0.400), and to the LSDG (r = 0.415), respectively. The LSDG seemed appropriate to predict the groundwater pollution in that it contained land use as a factor of the groundwater pollution sources and the rating of each class was defined by a real pollution nitrate concentration.

Hydrogeochemical processes and behavior of nitrate in an dlluvial aquifer: A preliminary result from Cheonan area, Korea

  • Kim, Kyoung-Ho;Yun, Seong-Taek;Choi, Byoung-Young;Kim, Kang-Joo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.97-99
    • /
    • 2004
  • To understand the geochemical processes controlling the distribution of nitrate and other agricultural constituents in an alluvial aquifer, hydrogeological and hydro geochemical studies were carried out in an agricultural area within Cheonan. In this selected field, nitrate concentrations were very wide in range but was locally attenuated significantly down to very low levels (<1.0 mg/L). Abrupt removal of nitrate coincided with the pattern of redox change and thus indicated that geochemical processes occurring during and after recharge events control the behavior and distribution of nitrate and other redox-sensitive chemical species.

  • PDF

Comparison of different surfactant system for simultaneous removal of nitrate and phosphate using micellar-enhanced ultrafiltration

  • 김보경;백기태;김호정;이율리아;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.417-421
    • /
    • 2003
  • Three kinds of surfactant systems - cationic surfactant (system 1), combinition of two cationic surfactants (system 2), and combination of two cationic surfactant and non-ionic surfactant (system 3) - for the simultaneous removal of nitrate and phosphate by micellar-enhanced ultrafiltration (MEUF) were investigated. The highest removal efficiencies of nitrate and phosphate were observed in system 2, which were 90 % of nitrate and 72 % of phosphate. The COD of permeate in system 3 was the lowest, because the added non-ionic surfactant made critical micelle concentration (CMC) lower than that of other surfactant systems. In all systems, the flux decline was similar.

  • PDF