• Title/Summary/Keyword: groundwater drawdown

Search Result 115, Processing Time 0.023 seconds

A case study of ground subsidence analysis using the InSAR technique (InSAR 기술을 이용한 지반침하분석 사례연구)

  • Moon, Joon-Shik;Oh, Hyoung-seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.171-182
    • /
    • 2022
  • InSAR (Interferometry SAR) technique is a technique that uses complex data to obtain phase difference information from two or more SAR image data, and enables high-resolution image extraction, surface change detection, elevation measurement, and glacial change observation. In many countries, research on the InSAR technique is being conducted in various fields of study such as volcanic activity detection, glacier observation in Antarctica, and ground subsidence analysis. In this study, a case of large ground settlement due to groundwater level drawdown during tunnelling was introduced, and ground settlement analyses using InSAR technique and numerical analysis method were compared. The maximum settlement and influence radius estimated by the InSAR technique and numerical method were found to be quite similar, which confirms the reliability of the InSAR technique. Through this case study, it was found that the InSAR technique reliable to use for estimating ground settlement and can be used as a key technology to identify the long-term ground settlement history in the absence of measurement data.

Estimation of optimal pumping rate, well efficiency and radius of influence using step-drawdown tests (단계양수시험을 이용한 최적 양수량, 우물효율 및 영향반경 산정)

  • Choi, Hyun-Mi;Lee, Jin-Yong;Cheon, Jeong-Yong;Jun, Seong-Chun;Kwon, Hyung-Pyo
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.127-136
    • /
    • 2010
  • Optimal pumping rate, well efficiency and radius of influence were estimated using field step-drawdown tests. According to the analysis results, optimal pumping rates were estimated as 9.37, 16.20 $m^3/day$ for KDPW 1 and 8.11, 14.10 $m^3/day$ for KDPW 2. The well efficiency was calculated as 72.02~90.73% for KDPW 1 while it was 70.62~88.52% for KDPW 2. In the meanwhile, the steady-state analysis yielded the radius of influence (ROI) of 3.50~31.92 m in case of pumping at KDPW 1 and the ROI of 0.14~37.43 m in case of pumping at KDPW 2. In addition, the transient analysis produced the ROI of 0.02~8.34 m for KDPW 1 pumping and the ROI of 0.24~9.68 m for KDPW 2 pumping. The methodology used in this study can be usefully applied in the pump and treat remediation design for contaminated groundwater.

A Field Verification Study on the Effect of Filter Layers on Groundwater Level Drop Characteristics, Permeability, Optimum Yield and Well Efficiency in the Unconfined Aquifer Well for Riverbank Filtration Intake (강변여과수 취수를 위한 충적우물에서 필터층이 수위강하특성, 투수성, 적정양수량 및 우물효율에 미치는 영향에 대한 현장실증 연구)

  • Song, Jae-Yong;Lee, Sang-Moo;Kang, Byeong-Cheon;Lee, Geun-Chun;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.509-529
    • /
    • 2019
  • This study performs to evaluate the role of filter material at alluvial well for intake of riverbank filtration and the applicability and improvement effect of dual filter well. To achieve this objective, dual filter intake well and single filter intake well were installed with different filter conditions at riverbank free surface aquifer in soil layer then we evaluated filter material condition, permeability, optimum yield and well efficiency according to yield in drawdown test. As a results, we assumed forming dual filter layer minimizes sudden speed changes at boundary between aquifer and filter layer by cushioning of groundwater flow. This suppresses warm current then intake groundwater efficiently, therefore it seems decreasing peripheral groundwater level changes in spite of higher intake water amount than single filter intake well. Furthermore, we confirmed by test, installing dual filter improves permeability, optimum yield and well efficiency. The result will be used by combining with former study to set up standard of design/construction of dual filter intake well at alluvial aquifer layer. Furthermore, we expect this result will be used to prove application effect of dual filter intake well compared to single filter one and radial collector well which are mainly applied on riverbank filtration.

Numerical Analysis and Exploring of Ground Condition during Groundwater Drawdown Environment in Open-cut Type Excavation (개착식 굴착공사시 지하수위 저하로 인한 지반상태 탐사 및 해석기법 연구)

  • Han, Yushik
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.93-105
    • /
    • 2018
  • Precise investigation and interpretation of the ground subsidence risk factors needed to predict and evaluate the settlement problems of the surrounding ground due to the ground excavation. There are various geophysical exploration methods to investigate the ground subsidence risk factors. However, there are factors that influence the characteristics of the underground medium in these geophysical methods, and the actual soil contains complex factors affecting geophysical exploration. Therefore, it is necessary to analyze the effects on the geophysical methods based on the understanding of the geotechnical properties of soil. In this study, a test bed was constructed to consider various complicated factors in the complex ground and the ground behavior was analyzed by numerical analysis. In addition, we analyzed the limitations on investigating the ground subsidence risk factors through ground penetration radar (GPR) survey. As a result, ground subsidence of Open-cut Type Excavation is caused by various factors. Especially, in the case of soft ground condition, it was found that it was greatly influenced by the flow change of groundwater level. At the center frequency of GPR of 250 MHz, the attenuation of the electromagnetic wave is severely attenuated in the clay with high electrical conductivity, making it difficult to penetrate deeply into the ground (4 m below the surface). As the electromagnetic waves pass through the groundwater level below the groundwater, the attenuation of the electromagnetic waves becomes severe.

Correction of the Ground Subsidence Risk Ratings during Open Cut Excavation (개착식 굴착공사 중 지반함몰 위험등급 분류시트의 등급 보정에 관한 연구)

  • Shin, Sang-Sik;Kim, Hak Joon
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.135-148
    • /
    • 2021
  • Ground subsidence risk ratings obtained from the site investigation during pre-excavation stages could be changed depending on the parameters revealed during construction activities. A method of correcting the pre-excavation ground subsidence risk ratings based on the site conditions observed in the field is suggested in this study. The elevation of groundwater table during the excavation may be different from the predicted value depending on the application of waterproofing methods and construction conditions. The drastic drawdown of groundwater table during the excavation could cause ground subsidence due to soil volume decrease related to consolidation or compression of the ground, whereas the rising of groundwater table caused by the intense rainfall may result in a high potential for ground subsidence due to heaving or boiling of the excavation bottom. Excessive displacements of retaining walls or ground settlements may cause ground subsidence, which also results in a high risk of ground subsidence caused by the destruction of buried pipelines. Reevaluation of ground subsidence risk ratings is suggested considering the fluctuation of groundwater table, condition of groundwater leakage, measured ground displacements, and soil types. Finally, the ground subsidence risk rating system is improved for better evaluation by using 12 factors in 5 categories.

Application of risk analysis and assessment considering tunnel stability and environmental effects in tunnel design (터널 안정성 및 환경성을 고려한 위험도 평가기법의 적용)

  • Kim, Young-Geun;Kim, Do-Hyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • Recently, because of the various factors by uncertainty of underground, the risks in tunnelling have been occurred increasingly. Therefore, it is very important to estimate and control the risks considering geotechnical conditions for tunnel stability and environmental problems by tunnel construction. In this study, the risk analysis for tunnel stability was carried out by classifying the risk factors such as ground support capacity, ground settlement, the inflow of groundwater into the tunnel and the damage by the earthquake. Also, the risk assessment for the environmental problems was performed by calculating the vibration and noise by blasting and the drawdown of the groundwater level caused by tunnel construction. Each risk factor was evaluated quantitatively based on the probabilistic and statistic technique, then it was analyzed the distribution characteristic along overall tunnel site. Finally, it was evaluated that how much each risk factor influences on the construction cost with a period for tunnel construction, so it is possible to perform reasonable tunnel design which was capable of minimizing the risks in the tunnel construction.

  • PDF

Relationship Analysis of Volumetric Water Content According to the Dielectric Constant for Stability Analysis of Ground Excavation (굴착의 안정성에 미치는 영향인자 분석을 위한 전자기적 유전상수와 체적함수비와의 상관관계 분석기법 연구)

  • Han, Yushik;Sohn, Hee Jeung;Yoo, Ki Cheong
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.3
    • /
    • pp.153-163
    • /
    • 2016
  • In order to prevent ground collapses by groundwater level drawdown, we need to understand the groundwater flow and also make an analytical approach to the cause of the collapses. In this study, we used the result of the soil lab tests to compare and review the suitability of the various interaction equations about the relation between volumetric water content and the dielectric constant. In addition, using GPR (Ground-Penetrating Radar), we reviewed the possibility of calculating an estimate of dielectric constant. Lastly, we applied seepage analysis and stress-strain analysis to the sandy ground given by ground excavation. In comparison with the previous result of the soil lab tests, we similarly predicted the suction of unsaturated soil from results of stress-strain analysis considered the seepage force for the unsaturated soil.

Evaluation of Pumping Rates for Multiple-Well Systems (군정 시스템의 취수량 평가)

  • Park, Nam-Sik;Kim, Sung-Yun;Kim, Boo-Gil;Kim, Il-Ryong
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.439-446
    • /
    • 2008
  • We have developed a method to evaluate pumping rates from a system of pumping-well family. For a given system actual pumping rates depend on pump characteristics and the sum of the static head and the dynamic head. The static head is the elevation difference between the natural groundwater level and the outlet of the pipeline that connects all the wells. Major components of the dynamic head are groundwater drawdown in the well and pipeline head loss. The dynamic head and the pump characteristics depend on the pumping rates. Actual pumping rates are determined at the intersections of the system total-head curves and the pump characteristic curves. The Newton-Raphson's method is used to solve the nonlinear simultaneous equations. The method is applied to a hypothetical well family. Impacts of various design and operational parameters on the pumping rates are analyzed.

A Study on Unsaturated Zone Characterization and Feasibility of Soil Vapor Extraction at a DNAPL-contaminated Site in Korea

  • Lee, Man Na Mi;Yeo, In Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.6
    • /
    • pp.48-55
    • /
    • 2013
  • This study aimed at characterizing unsaturated zone at the source zone area contaminated by DNAPL and investigating feasibility of soil vapor extraction (SVE). Five boreholes with three multi-level screens at the depth of 3.0~4.5 m, 5.5~7.0 m, and 8.0~12.0 m were installed at the source zone. Pneumatic tests were performed to determine the permeability of porous medium. Permeability was estimated to be 81.6 to 203.7 darcy, depending on the applied solutions, which was contradicted by grain size analysis of cored soil samples leading to 3.51 darcy. This is due to air flow through gravel pack during the early stage of pneumatic test. Pressure-drawdown curve in the late stage also well showed the leaky aquifer type, indicating air leakage to the ground. Air flow tests were also carried out to investigate air flow connectivity between multi-level wells, indicating that the horizontal air flow was well developed between the lower screens of the wells, not between the upper and middle screens due to the leakage to the surface. For the SVE test, there was no noticeable variation in TCE vapor concentration between three different test runs: 1. 8 hours daily for 5 days, 2. 24 hours together with air blowing at another well (BH1), 3. five consecutive days. Even for five-day consecutive test, total amount of removed TCE was estimated only to be as low as 46.5 g.

Genetic Prokaryotic Diversity in Boring Slime from the Development of a Groundwater Heat Pump System (지하수 히트펌프 시스템의 지중 환경관리를 위한 시추 슬라임의 원핵생물 유전자 다양성)

  • Kim, Heejung;Lee, Siwon;Park, Junghee;Joun, Won-Tak;Kim, Jaeyeon;Kim, Honghyun;Lee, Kang-Kun
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.550-556
    • /
    • 2016
  • Groundwater heat pump (GWHP) systems must consider phenomena such as clogging to improve system efficiency and maintenance. In this study, we evaluated the prokaryotic diversity in a boring slime sample obtained at a depth of 10 m, which represented an undisturbed sample not affected by aquifer drawdown. Bacteria belonging to the phyla Proteobacteria (20.8%), Acidobacteria (18.8%), Chloroflexi (16.9%), and Firmicutes (10.2%) were found. Additionally, 144 species were identified as belonging to the genus Koribacter. Archaeal phyla were detected including Thaumarchaeota (42.8%), Crenarchaeota (36.9%), and Euryarchaeota (17.4%) and the class level comprised the miscellaneous Crenarchaeota group (MCG), Finnish forest soil type B (FFSB), and Thermoplasmata, which collectively accounted for approximately 69.4% of the detected Archaea. Operational taxonomic units (OTUs) were analyzed to reveal 3,565 bacterial and 836 archaeal OTUs, with abundances of 7.81 and 6.68, and richnesses of 5.96E-4 and 2.86E-3, respectively. The distribution of the groundwater microbial community in the study area showed a higher proportion of non-classified or unidentified groups compared to typical communities in surface water and air. In addition, 135 (approx. 1.9%) reads were assigned to a bacterial candidate associated with clogging.