• Title/Summary/Keyword: groundwater development and management

Search Result 154, Processing Time 0.031 seconds

REVIEW OF GROUNDWATER CONTAMINANT MASS FLUX MEASUREMENT

  • Goltz, Mark N.;Kim, Seh-Jong;Yoon, Hyouk;Park, Jun-Boum
    • Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.176-193
    • /
    • 2007
  • The ability to measure groundwater contaminant flux is increasingly being recognized as crucial in order to prioritize contaminated site cleanups, estimate the efficiency of remediation technologies, measure rates of natural attenuation, and apply proper source terms to model groundwater contaminant transport. Recently, a number of methods have been developed and subsequently applied to measure contaminant mass flux in groundwater in the field. Flux measurement methods can be categorized as either point methods or integral methods. As the name suggests, point methods measure flux at a specific point or points in the subsurface. To increase confidence in the accuracy of the measurement, it is necessary to increase the number of points (and therefore, the cost) of the sampling network. Integral methods avoid this disadvantage by using pumping wells to interrogate large volumes of the subsurface. Unfortunately, integral methods are expensive because they require that large volumes of contaminated water be extracted and managed. Recent work has investigated the development of an integral method that does not require extraction of contaminated water from the subsurface. We begin with a review of the significance and importance of measuring groundwater contaminant mass flux. We then review groundwater contaminant flux measurement methods that are either currently in use or under development. Finally, we conclude with a qualitative comparison of the various flux measurement methods.

Development of Prediction Model of Groundwater Pollution based on Food Available Water and Validation in Small Watersheds (식품용수 수질자료를 이용한 지하수 오염 예측 모델 개발 및 소규모 유역에서의 검증)

  • Nam, Sungwoo;Park, Eungyu;Yi, Myeong-jae;Jeon, Seonkeum;Jung, Hyemin;Kim, Jeongwoo
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.165-175
    • /
    • 2021
  • Groundwater is used in many areas in food industry such as food manufacturing, food processing, cooking, and liquor industry etc. in Korea. As groundwater occupies a large portion of food industry, it is necessary to predict deterioration of water quality to ensure the safety of food water since using undrinkable groundwater has a ripple effect that can cause great harm or anxiety to food users. In this study, spatiotemporal data aggregation method was used in order to obtain spatially representative data, which enable prediction of groundwater quality change in a small watershed. In addition, a highly reliable predictive model was developed to estimate long-term changes in groundwater quality by applying a non-parametric segmented regression technique. Two pilot watersheds were selected where a large number of companies use groundwater for food water, and the appropriateness of the model was assessed by comparing the model-produced values with those obtained by actual measurements. The result of this study can contribute to establishing a customized food water management system utilizing big data that respond quickly, accurately, and preemptively to changes in groundwater quality and pollution. It is also expected to contribute to the improvement of food safety management.

A Study on the Estimation of Regional Groundwater Recharge Ratio (지역단위 지하수 자연함양율 산정방법 연구)

  • 최병수;안중기
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.2
    • /
    • pp.57-65
    • /
    • 1998
  • Recently, many researchers have studied on the estimation of groundwater storage and its usable amount in Korea. Those studies were, however, mostly on the groundwater recharge amount over the nation or for the large extent of areas. On the other hand, it has been also needed to study on the regional recharge rate for the planning of groundwater management or for the assessment of groundwater development impacts. In this paper, two practical methods for the estimation of regional groundwater recharge have been studied and proposed, which are $\circled1$ the estimation of the groundwater recharge due to the SCS-CN infiltration method, and $\circled2$ the estimation of groundwater recharge ratio by analyzing groundwater level hydrographs.

  • PDF

Analysis of groundwater level variability in the middle mountain area of Pyoseon watershed in Jeju Island using normalized standard deviation and cross correlation coefficient (정규화된 표준편차 및 교차상관계수를 이용한 제주도 표선유역 중산간지역의 지하수위 변동성 분석)

  • Shin, Mun-Ju;Moon, Soo-Hyoung;Moon, Duk Chul
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.5
    • /
    • pp.337-345
    • /
    • 2020
  • In order to provide information for proper management of groundwater resources, an analysis of the effects of precipitation and groundwater withdrawal on groundwater levels is needed. In this study, we analyzed the correlation of precipitation-groundwater level and groundwater withdrawal-groundwater level using time series data converted by normalized standard deviation (Nor.St.Dev) and cross correlation coefficient (CCC) for nine groundwater monitoring wells in the middle mountainous area in the southeastern Jeju Island. First, the CCCs of precipitation-groundwater level were estimated using daily time series data, and the low CCCs of up to 0.3 were obtained. However, the result of using the Nor.St.Dev showed a clearer correlation by obtaining a CCC of up to 0.8. In addition, in most cases, precipitation variability and groundwater level variability had positive CCCs, whereas groundwater withdrawal variability and groundwater level variability had negative CCCs. Therefore, the groundwater level in this study area was largely influenced by precipitation with little effect of groundwater withdrawal. Lastly, as a result of analyzing the relative effects of Seongpanak and Gyorae rainfall station on the groundwater level, the rainfall at the relatively downstream Gyorae rainfall station has more influence. The analysis method used in this study can be easily used for analyzing the effects of precipitation and groundwater withdrawal on groundwater level variability in other regions in the future.

Changes of soil water content and soybean (Glycine max L.) response to groundwater levels using lysimeter

  • Lee, Sanghun;Jung, Ki-Yuol;Chun, Hyen-Chung;Choi, Young-Dae;Kang, Hang-Won
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.299-299
    • /
    • 2017
  • Due to the climate changes in Korea, the numbers of both torrential rain events and drought periods have increased in frequency. Water management practice against water shortage and flooding is one of the key interesting for field crop cultivation, and groundwater often serves as an important and safe source of water to crops. Therefore, the objective of this study is to evaluate the effect of groundwater table levels on soil water content and soybean development under two different textured soils. The experiment was conducted using lysimeter located in Miryang, Korea. Two types of soils (sandy-loam and silty-loam) were used with three groundwater table levels (0.2, 0.4, 0.6m). Mean soil water content during the soybean growth period was significantly influenced by groundwater table levels. With the continuous groundwater level at 0.2m from the soil surface, soil water content was not statistically changed between vegetative and reproductive stage, but the 0.4 and 0.6m groundwater table level was significantly decreased. Lower chlorophyll content in soybean leaves was found in shallow water table treatment in earlier part of the growing season, but the chlorophyll contents were non-significant among water table treatments. Groundwater table level treatments were significantly influenced on plant available nitrogen content in surface soil. The highest N contents were observed in 0.6m groundwater table level. It is probably due to the nitrogen loss by denitrification as the result of high soil water content. The length and dry weight of primary root was influenced by groundwater level and thus the highest length and dry weight of root were observed in 0.6m water table level. This result showed that soybean root growth did not extend below the groundwater level and increased with the depth of groundwater table level. The results of this study show that the management of groundwater level can influence on soil characteristics, especially on soil water content, and it is an important practice of to reduce yield loss caused by the water stress during the crop growing season.

  • PDF

Development and Enhancement of Conceptual Site Model for Subsurface Environment Management (지중환경 관리를 위한 부지개념모델 구축 및 개선)

  • Bae, Min Seo;Kim, Juhee;Lee, Soonjae;Kwon, Man Jae;Jo, Ho Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.spc
    • /
    • pp.1-18
    • /
    • 2022
  • A conceptual site model is used to support decision-making of response strategy development, determination, and implementation within a risk-based contaminated site management system. It aims to provide base information of the relevant site characteristics and surface/subsurface conditions in order to understand the contaminants of concern and the associated risk they pose to the receptors. This study delineated the technical details of conceptual site model development, and discussed the possibility of applying it in domestic subsurface contamination management. Conceptual site models can be developed in various formats such as tables, diagrams, flowcharts, and figures. Contaminated sites are managed for a long period of time following the steps of investigation, remediation design, remediation, verification, and post-remedation management. The conceptual site model can be enhanced in each stage of the contaminated site management based on the continuously updated information on the site's subsurface environment. In the process of enhancement for conceptual site model, precision is gradually improved, and it can evolve from a conceptual and qualitative form to a more quantitatvive and three-dimensional model. In soil pollution management, it is desirable to incorporate the conceptual site model into the soil scrutiny system to better assess the current status of the contaminated site and support follow-up investigation and management.

Groundwater Movement Analysis according to Groundwater-Surface Water Interaction (지표수-지하수 상호관계에 따른 지하수 유동분석)

  • Ahn, Seung-Seop;Park, Dong-Il;Jung, Do-Joon;Seok, Dong-Ki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1945-1949
    • /
    • 2009
  • It is fact that many research is advanced about management and security of water resources according to serious problem which is raising its head that conservancy and management of water resources development of population and industry. Ground water of water resources is the source of water resources security with surface water, so it have to be continuous exploitation and research however, until now it researched in separate way from surface water, and it become connect each other for the research in actual condition in recent times. The research analyzed the recharge at the SWAT model, interpreted by used GMS/MODFLOW model for ground water flow change.

  • PDF

Current States of the Global Water Market and Considerations for the Groundwater Industry in South Korea (물 시장의 현주소와 지하수 산업에 대한 고찰)

  • Kim, Byung-Woo;Koh, Yong-Kwon;Choi, Doo-Houng;Kim, Deog-Geun;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.431-440
    • /
    • 2014
  • Since the establishment of the Groundwater Act in Korea in 1993, the national policy on groundwater has focused on the preservation and management of groundwater, which should be used only as a subsidiary water resource. However, population growth, increased water demand, climate change, and the need for uniform water distribution have brought changes to groundwater policy, and have led to the prioritization of development projects such as groundwater dams and river bank filtration. Population growth, changes to the water environment, and increased water risks have all played a role in triggering rapid growth within the water industry; the size of the investment in water resources will also continue to increase worldwide. Until now, private wells and bottled mineral water have led the groundwater industry in South Korea. However, a new area of the groundwater industry, which includes the health and medical sciences, employs groundwater properties derived from regional geology, and is growing. This requires the advancement of groundwater research and technical development connected with ICT (Information and Communication Technology) and medical science, and that the public development of groundwater and its various applications is expanded through locating groundwater in the core of the water industry cluster.

Partitioning Interwell Tracer Test for NAPL Source Characterization: A General Overview

  • Lee, Tony R.;A. Lynn Wood;Jeong, Seung-Woo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.159-162
    • /
    • 2002
  • Innovative and nondestructive characterization techniques have been developed to locate and quantify nonaqueous phase liquids (NAPLs) in the vadose and saturated zones in the subsurface environment. One such technique is the partitioning interwell tracer test (PITT). The PITT is a simultaneous displacement of partitioning and non-partitioning tracers through a subsurface formation. Partitioning tracers will partition into the NAPL during their transport through NAPL-contaminated formations. Mean travel times of partitioning and non-partitioning tracers are used to estimate the quantity of NAPL encountered by the displaced tracer pulse. Travel times are directly proportional to the partitioning coefficient and the volume of NAPL contacted in the subsurface environment. This paper discusses the conceptual background, design and implementation of PITTs. (This document has not been subjected to Agency review and therefore does not necessarily reflect the views of the Agency, and no official endorsement should be inferred.)

  • PDF