• Title/Summary/Keyword: groundwater development

Search Result 642, Processing Time 0.022 seconds

Schemes for the Environmentally Sound and Sustainable Development of Groundwater Resources (지하수자원의 환경적으로 지속가능한 개발 방안)

  • Hong, Sang-Pyo;Kim, Jung-Wuk
    • Journal of Environmental Impact Assessment
    • /
    • v.5 no.2
    • /
    • pp.49-57
    • /
    • 1996
  • On the basis of sustainable long-term water resources planning, the development of ground water resources should be interlocked with the surface water development In considering the intertemporal equity, overpumping of groundwater may diminish or eliminate the groundwater resources stock of post-generations. Regulatory landuse zoning for groundwater resources recharge area is indispensable measures to prevent groundwater pollution. Adequate treatment of polluted water from various sources such as municipal sewage, industrial wastewater, landfill site leachate, and abandoned boring wells, is also necessary for groundwater protection. To preserve groundwater resources as common property goods, groundwater use tax should be imposed upon the large scale groundwater use. Finally, the establishment of groundwater development license system is recommended to achieve the social optimal production and to avoid external diseconomy.

  • PDF

Improving the Genetic Algorithm for Maximizing Groundwater Development During Seasonal Drought

  • Chang, Sun Woo;Kim, Jitae;Chung, Il-Moon;Lee, Jeong Eun
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.435-446
    • /
    • 2020
  • The use of groundwater in Korea has increased in recent years to the point where its extraction is restricted in times of drought. This work models the groundwater pumping field as a confined aquifer in a simplified simulation of groundwater flow. It proposes a genetic algorithm to maximize groundwater development using a conceptual model of a steady-state confined aquifer. Solving the groundwater flow equation numerically calculates the hydraulic head along the domain of the problem; the algorithm subsequently offers optimized pumping strategies. The algorithm proposed here is designed to improve a prior initial groundwater management model. The best solution is obtained after 200 iterations. The results compare the computing time for five simulation cases. This study shows that the proposed algorithm can facilitate better groundwater development compared with a basic genetic algorithm.

Groundwater resources potential mapping and its verification using GIS and remote sensing in Pohang city (GIS 및 원격탐사를 이용한 포항시 지하수 잠재가능성도 작성 및 검증)

  • Lee Sa-Ro;Kim Yong-Sung;Won Jong-Ho
    • Spatial Information Research
    • /
    • v.14 no.1 s.36
    • /
    • pp.115-128
    • /
    • 2006
  • The aim of the study is to select and verify for development of groundwater resources using Geographic Information System(GIS). The water balance, land cover, forest, soil, elevation, slope, hydrogeology and lineament were analyzed. Using GIS, relationship between the data and groundwater yield data was analyzed and the groundwater resources potential map was made for selecting suitable area for groundwater development. Then groundwater resource potential map was verified using groundwater yield data. The verified result showed the good agreement between the potential map and groundwater yield data. The potential map can be used for groundwater management which is related to groundwater development.

  • PDF

A Study on the Characteristics of Saline Groundwater and Its Well Development in the Western Coastal Area of Jeju Island (제주 서부 해안 지역 염지하수 특성 및 관정 개발에 관한 연구)

  • Cho, Eun-Il;Ko, Tak-Kyun;Lee, Min-Gyu;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.27 no.8
    • /
    • pp.677-688
    • /
    • 2018
  • The purpose of this study was to minimize salt water intrusion into freshwater aquifers and limit the development of freshwater aquifers, by selecting an appropriate excavation depth of in the western coastal area of Jeju Island. The study site was mostly basaltic lava, which was mainly composed of trachy basalt. A vertical logging test was conducted to investigate the vertical distribution of the groundwater and saline groundwater interface in the study well. It was found that freshwater groundwater, saline groundwater, and freshwater groundwater are distributed from the surface to approximately 16 m, 16~50 m, and 50~60 m, below the ground, respectively. In order obtain saline groundwater and minimize the inflow of freshwater into this well, the drilling depth should be limited in the range of 16~50 m from the surface. Thus, saline groundwater well development should be carried out with reference to the measurement results, which depend on the drilling depth and EC (electrical conductivity) obtained with drilling apparatus for geology and ground handling.

Challenges of Groundwater as Resources in the Near Future

  • Lee, Jin-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.2
    • /
    • pp.1-9
    • /
    • 2015
  • Groundwater has been a very precious resource for human life and economic development in the world. With increasing population and food demand, the groundwater use especially for agriculture is largely elevated worldwide. The very much large groundwater use results in depletion of major aquifers, land subsidences in many large cities, anthropogenic groundwater contamination, seawater intrusion in coastal areas and accompanying severe conflicts for water security. Furthermore, with the advent of changing climate, securing freshwater supply including groundwater becomes a pressing and critical issue for sustainable societal development in every country because prediction of precipitation is more difficult, its uneven distribution is aggravating, weather extremes are more frequent, and rising sea level is also threatening the freshwater resource. Under these difficulties, can groundwater be sustaining its role as essential element for human and society in the near future? We have to focus our efforts and wisdom on answering the question. Korean government should increase its investment in securing groundwater resources for changing climate.

Evaluation of Optimal Amount of Groundwater Development for a Rural Small Watershed (농촌 소규모 유역의 지하수 적정개발량 평가)

  • Park, Ki-Jung;Sohn, Seung-Ho;Chung, Sang-Ok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.307-310
    • /
    • 2003
  • The purpose of this study was to obtain optimal amount of groundwater development for a rural small watershed. The optimal amount of groundwater development in this experimental watershed is 13.8 %($0.67{\times}10^6m^3$) of the annual rainfall by SCS-CN method. The Visual MODFLOW analyses showed the optimal amount of groundwater development were 14.9 %($0.72{\times}10^6m^3$) of the annual rainfall.

  • PDF

The Influence of the Surrounding Groundwater by Groundwater Discharge from the Subway Tunnel at Suyeong District, Busan City (부산 수영구 지하철 터널에서의 지하수 유출이 주변 지하수에 미치는 영향)

  • Chung, Sang-Yong;Kim, Tae-Hyung;Park, Nam-Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.28-36
    • /
    • 2012
  • This study carried out several kinds of investigations such as geology, hydrogeology, groundwater level and quality, surface-water quality, and the quantity and quality of groundwater discharge from the subway to identify the causes of groundwater contamination around the subway tunnel at Suyeong District in Busan City. Geostatistical analyses were also conducted to understand the characteristics of groundwater level and quality distributions. There are Kwanganri Beach and Suyeong River in the study area, which are basically influenced by seawater. The total quantities of groundwater utilization and groundwater discharge from the subway tunnel in Suyeong District are 2,282,000 $m^3$/year, which is 2.4 times larger than the sustainable development yield of groundwater. The lowest groundwater level around the subway tunnel is about 32 m below the mean sea-level. The large drawdown of groundwater led to the inflow of seawater and salinized river water toward the subway tunnel, and therefore the quality of groundwater didn't satisfy the criteria of potable, domestic, agricultural and industrial uses. Distribution maps of groundwater level and qualities produced by kriging were very useful for determining the causes of groundwater contamination in the study area. The distribution maps of electrical conductivity, chloride and sulfate showed the extent of seawater intrusion and the forceful infiltration of the salinized Suyeong River. This study revealed that seawater and salinized river water infiltrated into the inland groundwater and contaminated the groundwater around the subway tunnel, because the groundwater level was seriously drawdowned by groundwater discharge from the subway tunnel. The countermeasure for the minimization of groundwater discharge from the subway tunnel is necessary to prevent the groundwater obstacles such as groundwater depletion, groundwater-quality deterioration, and land subsidence.

Estimation of the allowable range of prediction errors to determine the adequacy of groundwater level simulation results by an artificial intelligence model (인공지능 모델에 의한 지하수위 모의결과의 적절성 판단을 위한 허용가능한 예측오차 범위의 추정)

  • Shin, Mun-Ju;Moon, Soo-Hyoung;Moon, Duk-Chul;Ryu, Ho-Yoon;Kang, Kyung Goo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.485-493
    • /
    • 2021
  • Groundwater is an important water resource that can be used along with surface water. In particular, in the case of island regions, research on groundwater level variability is essential for stable groundwater use because the ratio of groundwater use is relatively high. Researches using artificial intelligence models (AIs) for the prediction and analysis of groundwater level variability are continuously increasing. However, there are insufficient studies presenting evaluation criteria to judge the appropriateness of groundwater level prediction. This study comprehensively analyzed the research results that predicted the groundwater level using AIs for various regions around the world over the past 20 years to present the range of allowable groundwater level prediction errors. As a result, the groundwater level prediction error increased as the observed groundwater level variability increased. Therefore, the criteria for evaluating the adequacy of the groundwater level prediction by an AI is presented as follows: less than or equal to the root mean square error or maximum error calculated using the linear regression equations presented in this study, or NSE ≥ 0.849 or R2 ≥ 0.880. This allowable prediction error range can be used as a reference for determining the appropriateness of the groundwater level prediction using an AI.

A Study on Types of Groundwater Use and Proposal for Reasonable Use in Korea (우리나라 지하수 이용 형태 고찰과 합리적 활용 방안에 대한 연구)

  • Kim, Hyoung-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.112-127
    • /
    • 2017
  • Groundwater accounts for more than 10% of the total water supply in Korea. However, the contribution of groundwater to public water supply systems has been poorly played role throughout the country except for Jeju Island. Compared with the groundwater uses in foreign countries, the pattern of groundwater use in Korea seems to be very deformed and unreasonable. Currently, the development and use of groundwater in Korea are mostly carried out by the individuals, and public sectors such as central and local governments are not actively involved in such activities. Private groundwater use and management will continue to cause groundwater depletion and pollution problems. It is necessary to actively enhance the role of public authorities in groundwater managements by engaging precise hydrogeological surveys and proper economic evaluation in the development and operation of groundwater sources. Also, in order to solve the problems that public water supply systems overly rely on the surface water sources, it is necessary to take policies that require the water supply companies to secure a variety of water sources.

A study of the integration of the 2D ground water model WHPA with Desktop GIS for ground water well development by basic survey stage (지하수 관정개발 기초조사사업 업무지원을 위한 Desktop GIS와 2D 지하수 모델 WHPA 통합 연구)

  • Kim, Man-Kyu;Jung, Byong-Ho;Lim, Chang-Young;Park, Jong-Cheol
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.257-260
    • /
    • 2002
  • This study develops a GIS-based system which examines the adequacy of the Groundwater development project before the actual designing of the project. Using the system developed here, we can transfer simulation results obtained by WHPA regarding Groundwater levels in new development projects into GIS. We can also judge whether a Groundwater development project should be permitted through examining overlaps of the effects of the development and comparing with other pollutants. Since a two-tiered system which shares DB using inter- and intranets is developed, all the departments in the ministry of agriculture and forest and the agriculture base corporation can share accurate, reliable and latest information related to Groundwater.

  • PDF