• Title/Summary/Keyword: groundwater conservation area

Search Result 33, Processing Time 0.024 seconds

A Study on Designation and Management of Groundwater Conservation Area Using Groundwater Classification Map (지하수 분류도 작성에 의한 서울시 지하수 보전지구 선정\ulcorner관리 방안 연구)

  • 김윤종;이석민;원종석;이성복
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.97-112
    • /
    • 2001
  • The Section 12 of Groundwater Law stipulates that groundwater conservation zone should be regulated by the designation of conservation area and development restricted area, The most important policy for groundwater conservation and protection is to estimate and designate groundwater conservation zone. The groundwater classification map is utilized to determine the prime groundwater conservation areas, which delineate the first and the second ranked conservation areas of the map. According to the classification method of the Ministry of Construction and Transportation in 2000, groundwater quality for groundwater classification is classified with 4 levels based on the following conditions : (1) the present groundwater quality; (2) the potential usage as drinking water at present and in the future; (3) hydrogeological characteristics, and (4) the existence of pollution sources and activities. Throughout the initial analysis, the groundwater conservation areas are represented about 57.1$\textrm{km}^2$ in the groundwater classification map, which is 9.4% of Seoul Metropolitan Area. The management guidelines for groundwater conservation area are also developed referring to Cheju Province Groundwater Conservation Management Project and the guidelines by the Ministry of Construction and Transportation. But the specific administration and detailed technical survey should be prepared to efficiently manage the groundwater conservation area.

  • PDF

The Strategy for the Advancement of Groundwater Management in Korea (국내 지하수 통합관리 선진화 전략)

  • Kang, Sunggoo;Kim, Jiwook;Choi, Yongjun;Park, Minyoung;Park, Hyunjin;Lee, Jinkwan
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.2
    • /
    • pp.36-40
    • /
    • 2022
  • To respond to rapidly changing water circumstances such as climate change, drought, etc., the korean government (MOE) established four advanced strategies for integrated groundwater management. The first strategy is watershed-based management of groundwater. The second strategy is total quantity management of groundwater including improvement of groundwater preservation area policy and procedure of investigation for groundwater influence area, additional construction of groundwater dam, installation of large-scale public wells, extention of spilled groundwater use. The third strategy is prevention of groundwater contamination including expansion of monitoring wells, introducing declaration of groundwater contamination. The last strategy is advancement of groundwater information management including integrated management of data, setting up a big-data based open platform. The above-mentioned four strategies will be reflected in the 4th National Groundwater Management Plan to secure implementation power, and it is expected to laid the foundation for advanced and rational groundwater management system.

Estimation Methods of Groundwater Recharge Rate in Small Basin (소유역의 지하수함양율 추정기법)

  • 박재성;김경호;전민우;김지수
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.76-86
    • /
    • 1999
  • It is necessary to estimate the groundwater recharge rate properly to predict the demand of groundwater and to establish the plan for the development of groundwater in the future. In this paper, A small basin in Chojung area is selected to calculate the groundwater recharge rate. In the calculation, water balance analysis, SCS-CN (Soil Conservation Service-Curve Number) method. groundwater-level analysis and hydrograph of outflow analysis are applied to this area. Data of precipitation measured by Chungju climatological station for about 10 years are used for water balance analysis and SCS-CN method. For the groundwater-level analysis. variations of groundwater-level measured from the 3 test wells in 1997's are used and stage-discharge rating curves in this area for 3 years are used for the hydrograph of outflow. The recharge rate calculated by water balance is 19%, 12.95% by SCS-CN method. 16.51% by groundwater-level analysis and 10.9% by hydrograph of outflow analysis and the overall average recharge rate is about 14.84%.

  • PDF

Groundwater Contamination at the Seokdae Waste Landfill Area of Pusan City (부산 석대 폐기물 매립장 일대의 지하수 오염)

  • 정상용
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1995
  • Wastes produce groundwater contamination, offensive odor, and hazardous gases. This study investigates the contamination of groundwater at the Seokdae waste landfill area and seeks the desirable ways to minimize the groundwater contamination. Groundwater levels, water chemistry and aquifer characteristics of wells were examined around the Seokdae waste landfill. The water chemistry of the Dong stream, the groundwater distribution and flow were also studied. The results of this research show that the estimated quantity of the percolation from the landfill base to the ground is 520 ㎥/day and the extent of groundwater contamination is about 1-1.5 km from the center of the waste landfill. The groundwater contains heavy metals and other toxic elements. The conservation and management of the groundwater of the waste landfill need several monitoring wells to check the quantity and quality of groundwater, pumping wells to extract the contaminated groundwater, and slurry walls to protect the movement of contaminated groundwater.

  • PDF

Policy of Soil Environment and Restoration Technology-Status and Recent Changes (토양환경 정책 및 복원 기술-현황과 최근변화)

  • Jang, Yeon-Su
    • Journal of the Korean Professional Engineers Association
    • /
    • v.41 no.3
    • /
    • pp.30-34
    • /
    • 2008
  • Recently problems of soil and groundwater contamination occur in major construction sites of highway, dam and railways. Contaminants of oil fuels are also detected in the former fuel storage facilities of railroad station and army troops of transportation, etc. These facilities are planned as the sites of commercial infrastructures after restoration from pollutants by the law of soil environment conservation of Korea. In this manuscript, the contents of soil environment conservation law including soil assessment and restoration technology are introduced. Recent changes of soil environment area are also analyzed.

  • PDF

Study on the water bursting law and spatial distribution of fractures of mining overlying strata in weakly cemented strata in West China

  • Li, Yangyang;Zhang, Shichuan;Yang, Yingming;Chen, Hairui;Li, Zongkai;Ma, Qiang
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.613-624
    • /
    • 2022
  • A study of the evolution of overburden fractures under the solid-fluid coupling state was conducted based on the geological and mining characteristics of the coal seam depth, weak strata cementation, and high-intensity mining in the mining areas of West China. These mining characteristics are key to achieving water conservation during mining or establishing groundwater reservoirs in coal mines. Based on the engineering background of the Daliuta Coal Mine, a non-hydrophilic simulation material suitable for simulating the weakly cemented rock masses in this area was developed, and a physical simulation test was carried out using a water-sand gushing test system. The study explored the spatial distribution and dynamic evolution of the fractured zone in the mining overburden under the coupling of stress and seepage. The experimental results show that the mining overburden can be vertically divided into the overall migration zone, the fracture extension zone and the collapse zone; additionally, in the horizontal direction, the mining overburden can be divided into the primary fracture zone, periodic fracture zone, and stop-fracture zone. The scope of groundwater flow in the overburden gradually expands with the mining of coal seams. When a stable water inrush channel is formed, other areas no longer generate new channels, and the unstable water inrush channels gradually close. Finally, the primary fracture area becomes the main water inrush channel for coal mines. The numerical simulation results indicate that the overlying rock breaking above the middle of the mined-out area allows the formation of the water-conducting channel. The water body will flow into the fracture extension zone with the shortest path, resulting in the occurrence of water bursting accidents in the mining face. The experimental research results provide a theoretical basis for the implementation of water conservation mining or the establishment of groundwater reservoirs in western mining areas, and this theoretical basis has considerable application and promotion value.

Soil Pollution Characteristics of Metallic Mine Area according to Extraction Methods (추출방법에 따른 금속광산 주변의 토양오염 특성)

  • Yang, Jung-Seok;Lee, Ju-Young;Park, Young-Tae;Baek, Ki-Tae;Choi, Jae-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.3
    • /
    • pp.1-6
    • /
    • 2010
  • This study investigated the change of metal contamination levels according to amendment of enforcement regulation of the Soil Environmental Conservation Act in Korea. As an analytical result of 87 samples in abandoned metallic mine area, the extracted amount of As, Pb and Cu with aqua regia was 4.3~29.6 times higher than that with hydrochloric acid extraction and the number of samples, which contamination levels were found to exceed soil contamination standards, was also increased. On the other hand, in case of Cd, Zn, and Ni, the number of samples, which contamination levels were found to exceed soil contamination standards, was decreased or similar. These results can be used as a preliminary material in comparison between the soil pollution data accumulated previously and the data obtained by the revised standard method for the examination of soil pollution.

An Interpretation of Changes in Groundwater Level and Electrical Conductivity in Monitoring Wells in Jeiu Island (제주도의 지하수 관측망 자료를 이용한 지하수위 및 전기전도도 변화 해석)

  • Lee, Jin-Yong;Lee, Gyu-Sang;Song, Sung-Ho
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.925-935
    • /
    • 2007
  • Water sources in volcanic Jeju Island are almost entirely dependent on groundwater because there are actually no perennial streams or rivers due to the permeable nature of surface soils derived from basaltic or trachytic rocks. Uncontrolled development of groundwater resulted in substantial water-level decline, groundwater pollution, and seawater intrusion in several places of the island. To maintain its sustainable groundwater, the provincial government has declared some parts of the island as the Special Groundwater Conservation/Management Area since 1994. Hence, all the activities for the groundwater development in the area should obtain official permit from relevant authorities. Furthermore, to acquire information on groundwater status, a network of groundwater monitoring was established to cover most of the low land and coastal areas with the installation of automatic monitoring systems since 2001. The analysis of the groundwater monitoring data indicated that the water levels had decreased at coastal area, especially in northern part of the island. Moreover, very high electrical conductivity (EC) levels and their increasing trends were observed in the eastern part, which was ascribable to seawater intrusion by intensive pumping in recent years. Water level decline and EC rise in the coastal area are expected to continue despite the present strict control on additional groundwater development.

A Subsurface Environmental Management System using Spatial Information System and Groundwater Model (공간정보시스템과 지하수모형을 결합한 지하환경관리시스템의 구축)

  • Kim, Joon Hyun;Han, Young Han
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.287-291
    • /
    • 1999
  • This study was performed to develop an information processing system for the sound conservation of soil and groundwater resources. The system contains the geographic spatial information system(GSIS), and the numerical model of groundwater flow and contamination. Numerical models (MODFLOW, MOC3D, MT3D, PMPATH, PEST, UCODE) and GSIS(ArcView) were integrated for the construction of an integrated management system of subsurface environment. The developed system was applied to the management of three mineral water companies located in clean mountain area. The impact of pumping over the overall catchment basin was modeled using the developed system for the decision of future management criteria.

  • PDF