• Title/Summary/Keyword: grounding system

Search Result 467, Processing Time 0.023 seconds

A Comparative Analysis of Step and Touch Voltages Depending on Two Test Voltage Waveforms

  • Jung, Kwang-Seok;Cha, Sang-Wook;Park, Dae-Won;Kil, Gyung-Suk;Oh, Jae-Geun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.152-155
    • /
    • 2011
  • This paper presents a comparative analysis on step and the touch voltages generated by either a sine and a ring wave voltage generator; this analysis was done as a basic study in order to develop a small and lightweight ground meter. A ring wave generator using pulsed power technology was fabricated; an experimental grounding system specified in Institute of Electrical and Electronics Engineers standards 80 and 81 was installed. The step and the touch voltages, which were measured using comparable a sine and a ring waves in terms of magnitude and frequency, were equal. Using pulsed power technology, the weight of the fabricated ring wave generator could be reduced to one-fifth of that of a sine wave generator. Consequently, if a ground meter adopts the ring wave instead of a sine wave, it will be possible to reduce the weight of a ground meter and improve the efficiency of measurement.

Evaluation of Errors Due to Earth Mutual Resistance in Measuring Ground Impedance of Vertically-driven Ground Electrode (수직 접지전극의 접지임피던스 측정에서 도전유도에 의한 오차 평가)

  • Choi, Jong-Hyuk;Choi, Young-Chul;Lee, Bok-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1778-1783
    • /
    • 2009
  • Ground impedance for the large grounding system is measured according to the IEEE Standard 81.2 which is based on the revised fall-of-potential method of installing auxiliary electrode at a right angle. When the auxiliary electrodes are located at an angle of $90^{\circ}$, the ground impedance inevitably includes the error due to earth mutual resistance. In this paper, in order to accurately measure the ground impedance of vertically-driven ground electrodes, error rates due to earth mutual resistance are evaluated by ground resistance and ground impedance measuring devices and compared with calculated values. As a result, the measured results are in good agreement with the computed results considering soil layer with different resistivity. The error rates due to earth mutual resistance decrease with increasing the length of ground electrode in the case that the ratio of the distance between the ground rod to be measured and the auxiliary electrodes to the length of ground electrode(D/L) is same. The ground impedance should be measured at the minimum distance between the auxiliary electrodes that will have an estimated measurement accuracy due to earth mutual resistance.

Analysis of Soil Ionization Behaviors under Impulse Currents

  • Lee, Bok-Hee;Park, Geon-Hun;Kim, Hoe-Gu;Lee, Kyu-Sun
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.98-105
    • /
    • 2009
  • This paper presents the characteristics of soil ionization for different water contents, and the parameters associated with the dynamic properties of a simple model grounding system subject to lightning impulse currents. The laboratory experiments for this study were carried out based on factors affecting the soil resistivities. The soil resistivities are adjusted with water contents in the range from 2 to 8% by weight. A test cell with a spherical electrode buried in the middle of the hemispherical container was used. As a result, the electric field intensity $E_c$ initiating ionization is decreased with the reduction of soil resistivities. Also, as the water content increased, the pre-ionization resistance $R_1$ and the post-ionization resistance $R_2$ became lower with increasing current amplitude. The time-lag to ionization $t_1$ and the time-lag to the second current peak $t_2$ at high applied voltages were significantly shorter than those of low applied voltages. It was found that the soil ionization behaviors are highly dependent on the water content and the applied voltage amplitude.

Performance Evaluation of Early Streamer Emission Lightning Air Terminal

  • Choi, Sang-Won;Her, Yong
    • International Journal of Safety
    • /
    • v.5 no.2
    • /
    • pp.18-23
    • /
    • 2006
  • Studies have claimed that ESE (Early Streamer Emission) air terminals offer a vastly increased zone of protection over that of traditional lightning rods (Franklin rods) by causing the emission of an upward streamer/leader: The upward streamer/leader will propagate towards the tip of the downward leader at an early stage in the attachment process.. This paper shows the results of a performance evaluation test of a particular type of the ESE air terminal (called "ElecHippo") with a simple rod tested at the Korea Electrotechnology Research Institute (KERI). The corona emission current of the ElecHippo made by Yong-Jin Enterprise Corp. has also been measured at the Occupational Safety & Health Research Institute (OSHRI). The results show that the ElecHippo meets the French standard of NFC 17-102-1995. The results also verify the ESE performance by measuring the ion emission current generated in the discharge electrode gap as a function of the capacitance and inductance of the equipped devices. Finally, we propose a new method for grounding the system to reduce the lightning damage by combining the ESE air terminal, the early discharge earth plate, the lightning strike recorder and the surge protection device.

Optimization of the Earthing Resistance and Research on the Electrical Characteristics of New Catalyst for the Quality Earthing (접지품질 개선을 위한 접지저항 최적화 및 접지충진제의 전기적 특성 연구)

  • Park, C.G.;Ahn, S.J.;Woo, J.W.;Ahn, S.J.;Yu, Y.J.;Ahn, S.J.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1078-1085
    • /
    • 2006
  • In earthing technologies, the intrusion of the surge wave can be protected when the earthing resistance is as low as several ohms. However, the cost fer realizing such a low resistance is quite high. Therefore it is important to determine appropriate target value of the earthing resistance to install cost-effective grounding system. In this work, we have proposed an optimization method of the earthing resistance according to the various environmental parameters by using a numerical simulator We have also developed new catalyst composed of water-soluble alkaline elements and activated carbon and investigated its electrical characteristics for enhancement of the earthing qualities.

  • PDF

A Novel Non-Isolated DC-DC Converter with High Efficiency and High Step-Up Voltage Gain (고효율 및 고변압비를 가진 새로운 비절연형 컨버터)

  • Amin, Saghir;Tran, Manh Tuan;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.11-13
    • /
    • 2019
  • This paper proposes a novel high step-up non-isolated DC-DC converter, suitable for regulating dc bus in various inherent low voltage micro sources especially for photovoltaic (PV) and fuel cell sources. This novel high voltage Non-isolated Boost DC-DC converter topology is best replacement, where high voltage conversion ratio is required without the transformer and also need continuous input current. Since the proposed topology utilizes the stack-based structure, the voltage gain, and the efficiency are higher than other conventional non-isolated converters. Switches in this topology is easier to control since its control signal is grounding reference. Also, there is no need of extra gate driver and extra power supply for driver circuit, which reduces the cost and size of system. In order to show the feasibility and practicality of the proposed topology principle operation, steady state analysis and simulation result is presented and analyzed in detail. To verify the performance of proposed converter and theoretical analysis 360W laboratory prototype is implemented.

  • PDF

Ultimate Strength Analysis of Stiffened Plate with Minor Collision Damage (작은 충돌손상을 가진 보강판의 최종강도 해석)

  • Lee, Tak-Kee;Rim, Chae-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.34-37
    • /
    • 2007
  • The safety of ships is one of the most important concerns in terms of the environment and human life. A ship in bad condition is likely to be subject to accidents, such as collision and grounding. When a ship has minor collision damages in the form of circle or ellipse, its ultimate strength will be reduced. It is important to evaluate the reduction ratio of a ship's ultimate strength that results from damages. The strength reduction of a plate with a cutout in the form of hole has been treated by many researchers. A closed-form formula for the reduction of ultimate strength of a plate, considering the effect of several forms of cutout, has been suggested. However, the structure of ships is composed of plates and stiffeners so-called stiffened plates and it is likely that plates and stiffeners will be damaged together in collisions. This paper investigates the effect of minor collision damages on the ultimate strength of a stiffened plate by using numerical analysis. For this study, the deformed shape of minor collision damages on a stiffened plate was made by using a contact algorithm and was used as the initial shape for ultimate stress analysis. Then, a series of nonlinear FE analyses was conducted to investigate the reduction effects on the ultimate strength of the stiffened plate. The boundary conditions were simply supported at all boundaries, and the tripping of stiffener was neglected. The results are presented in the form of reduction ratio between the ultimate strength of an original, intact stiffened plate and that of a damaged stiffened plate.

Characteristics of Neutral Point Loci on Line Voltages to Hull When Insulation Resistance Collapses by Earthing Faults at 3 Phase Power Distribution Systems Onboard Vessels (선박 3상배전선로의 지락고장에 따른 대지전압 중성점의 이동경로 특성)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1117-1123
    • /
    • 2011
  • Ungrounded power systems are adopted onboard vessels which enable more stabilized power supply even in case of electric leakage to hull. If earthing faults happen at these systems, they make grounding impedances of power lines unbalanced each other on the three phases, resulting in high voltages to hull which can bring more possibilities of electric shocks and electric fires. This study focuses on how to configure a calculation module for transferring a grounded condition by lowered insulation resistance into a vector diagram of the voltages to hull. By using the module, the loci of neutral points were acquired to analyze how voltages to hull are affected by earthing faults and the distributed capacitances between power lines and hull. The suggested module was simulated and compared to the measured values from a test power system in good results.

320-Channel Multi-Frequency Trans-Admittance Scanner(TAS) for Anomaly Detection (도전율 및 유전율이 다른 병소의 검출을 위한 320-채널 다주파수 Trans-Admittance Scanner(TAS))

  • Oh, Tong-In;Lee, Min-Hyoung;Kim, Hee-Jin;Woo, Eung-Je
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.84-94
    • /
    • 2007
  • In order to collect information on local distribution of conductivity and permittivity underneath a scan probe, we developed a multi-frequency trans-admittance scanner (TAS). Applying a sinusoidal voltage with variable frequency on a chosen distal part of a human body, we measure exit currents from 320 grounded electrodes placed on a chosen surface of the subject. The electrodes are packaged inside a small and light scan probe. The system includes one voltage source and 17 digital ammeters. Front-end of each ammeter is a current-to-voltage converter with virtual grounding of a chosen electrode. The rest of the ammeter is a voltmeter performing digital phase-sensitive demodulation. Using resistor loads, we calibrate the system including the scan probe to compensate frequency-dependent variability of current measurements and also inter-channel variability among multiple. We found that SNR of each ammeter is about 85dB and the minimal measurable current is 5nA. Using saline phantoms with objects made from TX-151, we verified the performance of the lesion estimation algorithm. The error rate of the depth estimation was about 19.7%. For the size estimate, the error rate was about 15.3%. The results suggest improvement in lesion estimation algorithm based on multi-frequency trans-admittance data.

A Study on a Shielding Effect of the Messenger Wires in Distribution Lines (배전선로에서의 조가선 차폐 효과 연구)

  • Kim, In-Soo;Han, Woong;Yeo, Sang-Min;Kim, Chul-Hwan;Weon, Bong-Ju;Lim, Yong-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.431-436
    • /
    • 2009
  • As the telecommunication lines bring into widespread use, one of the most important aspects related to power distribution systems is effectively to evaluate the effect on the telecommunication lines from power lines. One of the efficient methods to evaluate the effect is to measure the induced voltage of a telecommunication line as a result of a ground-loop. If the power lines cause high induced voltage, the ground reference in the telecommunication lines is no longer a stable potential, so signals may ride on the noise. A ground loop is common wiring conditions where a ground current may take more than one path to return to the grounding electrode at the arrangement between the power lines and telecommunication lines. When a multi-path connection between the power lines and telecommunication line circuits exists, the resulting arrangement is known as a ground loop. Whenever a ground loop exists, there are potential for damages or abnormal operations of the telecommunication lines. The power lines can induce the voltage on the communication line. The effects can be calculated by considering the inductances and capacitances. However, if we assume that there are only power lines, it doesn't have a practical meaning because there are conductors with other purpose in the neighborhood of the lines. If we consider that case, we need more complex system. Therefore we suggest more complex system considering the conductors with other purpose in the neighborhood of the lines. The neutral wires and the overhead ground wires are considered for calculating the induced voltage. We assume that there are the messenger wires beside the power line as a result of increased use of them. The main purpose of this paper is a study on a shielding effect of messenger wires in the distribution lines. EMTP(Electro-Magnetic Transients Program) program is used for the induced voltage calculation.