• Title/Summary/Keyword: grounding Area

Search Result 70, Processing Time 0.026 seconds

A Study on the Unification of the Grounding System of SeoulMetro (서울메트로 접지설비 표준화 방안 연구)

  • Kim, Gyun-Sig;Park, Han-Yeong;Back, Yu-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1027-1036
    • /
    • 2007
  • Since the opening of the Seoul Metro in 1974, the electric railway passengers have been increased rapidly and as the advanced equipments(OC,PSD) were introduced, additional power facilities were built in a limited area for the comfortable transportation environment. Present grounding system were built according to old Electric equipment standards and all the electric signal, communication and electronic equipments were built only for the purposes of protecting building structure, people and electronic equipments. Grounding system which was additionally built in the limited area caused problems with the building structure and it caused secondary damages when earth fault happens. One of the problems is grounding system of the building structure; grounding system does not work properly since grounding equipments are not separated from each other. So, existing grounding system needs to be improved and unified grounding system in the building should be established. The purposed of this study is to analyze all the grounding systems that had been built in different year and to establish unified grounding system of Seoul Metro.

  • PDF

Performance Evaluation of Protection against Electric Shocks for TT and TN Systems (TT, TN접지계통의 감전보호 성능평가)

  • Lee, Bok-Hee;Choi, Young-Chul;Yoo, Jae-Duk;Shin, Hee-Kyung;Yang, Soon-Man;Kim, Tae-Gi;Lee, Zu-Cheul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.315-318
    • /
    • 2009
  • Electric shock is the accident caused by the current through a person or animal's body. That is characterized by the physiological effects. In this paper, we evaluate performance of protection against electric shocks for TT and TN grounding systems which are used by a low voltage consumer nowadays. The performance of protection against electric shocks for TT grounding system is very excellent in equipotential area of the third class grounding, but the performance is poor outside the equipotential area. The performance of protection against electric shocks for TN grounding system is excellent because the potential difference is less than 50V. Accordingly, the performance of protection for TN grounding system is good as compared with that for TT grounding System.

  • PDF

Mesh Grounding Design Based on the Study of Dangerous Voltage on Limited Sites (제한된 부지에서 위험전압 검토에 의한 메시 접지설계)

  • Son, Seok-Geum;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.91-97
    • /
    • 2011
  • In Korea, characterized in most cases by limited area or high earth resistivity, it is likely to design narrow distances between grounding conductors, with a view to keeping ground resistance and touch voltage below the safety margin values. A new grounding method is suggested, making use of double meshes, to lower touch voltage in a confined area, since it is difficult to lay the plugs under the ground with narrow gaps between them on a limited site. For the presentation of a new model, the suggested grounding system has been analyzed and studied in ground resistance, touch voltage and step voltage, using IEEE Std. 80 calculations and computer simulations.

Investigation of Coring Grounding Construction by Equivalent Radius Concept (등가반경개념에 의한 코어링 접지공사의 고찰)

  • 김세호;김일환;양문길
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.5
    • /
    • pp.103-110
    • /
    • 2003
  • The grounding system is necessary to provide means to dissipate electric currents into the earth without exceeding any operating and equipment limits. The ground is composed of various soils and the resistivity of the soil depends on many parameters. It depends on the type of soil and varies with distance as well as with depth. Especially, soil resistivity of volcanic area such as Jeju is ve교 high and it is difficult to acquire necessary grounding resistivity. This paper introduces the efficient grounding construction using coring technique for proper grounding resistance in high resistivity area. Because it is difficult to measure the accurate resistivity of soils, their resistivities are estimated using measured value of ground resistance and equivalent radius method. Estimated resistivities are used for grounding resistance in scheduled construction region.

Comparison the grounding effect of a grounding rods and a grounding copper band in the Distribution System (배전계통 접지전극의 접지효과 분석 연구)

  • Kang Moon Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.509-511
    • /
    • 2004
  • Grounding rods as a discharge path are normally used to ensure the safety of human beings and facilities from the over-voltages and the over·current. Each grounding mode class 1, class 2, class 3, special class 4- has prescribed ground resistance values which are kept by the utilities. However, in the distribution system, it is very difficult for grounding rods to obtain the prescribed ground resistance values because of the limits of installation space. Therefore, in this paper, the grounding effects of the grounding copper bands which are recently developed to use efficiently in small area and the grounding rods are compared by testing the ground resistance values, ground potential rise(GPR), and step voltage in various cases.

  • PDF

A Study on the Optimal Divergence Spacing of the Connecting Grounding Rod to the Dangerous Voltage in the Global Earthing Network of Urban Rail Transit (도시철도 통합접지망에서의 위험전압에 따른 연접접지봉의 최적 분기간격에 관한 연구)

  • Jung, Ho-Sung;Park, Young;Kim, Hyeng-Chul;Kim, Jin-Hee;Kim, Jae-Moon;Cho, Dae-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1374-1379
    • /
    • 2012
  • Urban rail transit tends to global grounding system in order to control ground potential rise and potential differences between electric equipments. In addition, global grounding system can discharge the large capacity surge current to the ground safely. Since some railway electric equipments are installed all section of line, the global grounding system connected with the connecting grounding wire is more effectively. However, if the fault occurred in the connecting grounding wire area, some dangerous voltage is generated. So, the installation of additional grounding rod will be required. In this study, the global grounding system is simulated using CDEGS program to analyze the divergence spacing of additional ground rod depending on dangerous electric potential characteristics. Grounding net of the each station is modelled in depending on the size of the platform, and the spacing of the connecting grounding rod are compared 50m, 100m, 250m and 400m. Simulation results considering of earth resistivity and underground condition of the connecting grounding wire, spacing of the connecting grounding rod is that less than 250m to spacing of the ground rod was appropriately confirmed.

A Case of Reducing Grounding Resistance of 154KV Substation (154KV 변전소의 접지저항 저감대책 검토사례)

  • Kee, H.T.;Choi, J.K.;Jung, G.J.;On, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2064-2067
    • /
    • 2000
  • In our country, most region is composed of mountains and people have recently been displeased with the construction of the substations in their vicinity so the substations newly built are mainly constructed with GIS system in the small area that has high soil resistivity near mountain. Therefore, nowadays the design of substation grounding system has been difficult, and the additional considerations are needed. UC substation was also difficult to design the grounding system because of so small substation area and high soil resistivity. This paper shows the examples of reducing the grounding system resistance reasonably by using several ways. Designing the ground grid electrode in the access road, deep electric earth probe, changing the substation soil with the law level resistivity soil. This report deals with the computer simulation of the grounding system resistance about the ways illustrated above.

  • PDF

Grounding Line Change of Ronne Ice Shelf, West Antarctica, from 1996 to 2015 Observed by using DDInSAR

  • Han, Soojeong;Han, Hyangsun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Grounding line of a glacier or ice shelf where ice bottom meets the ocean is sensitive to changes in the polar environment. Recent rapid changes of grounding lines have been observed especially in southwestern Antarctica due to global warming. In this study, ERS-1/2 and Sentinel-1A Synthetic Aperture Radar (SAR) image were interferometrically acquired in 1996 and 2015, respectively, to monitor the movement of the grounding line in the western part of Ronne Ice Shelf near the Antarctic peninsula. Double-Differential Interferometric SAR (DDInSAR) technique was applied to remove gravitational flow signal to detect grounding line from the interferometric phase due to the vertical displacement of the tide. The result showed that ERS-1/2 grounding lines are almost consistent with those from Rignot et al. (2011) which used the similar dataset, confirming the credibility of the data processing. The comparison of ERS-1/2 and Sentinle-1A DDInSAR images showed a grounding line retreat of $1.0{\pm}0.1km$ from 1996 to 2015. It is also proved that the grounding lines based on the 2004 MODIS Mosaic of Antarctica (MOA) images and digital elevation model searching for ice plain near coastal area (Scambos et al., 2017), is not accurate enough especially where there is a ice plain with no tidal motion.

Grounding Grid Design Considering the Dangerous Voltage of Multi-layered Model in the Constrained Sites (제한된 부지 다층 대지구조에서 위험전압을 고려한 접지설계)

  • Son, Seok-Geum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.3
    • /
    • pp.139-144
    • /
    • 2013
  • In Korea, where most of the sites are narrow in space and their earth resistivity is relatively high, the spaces between grounding conductors are likely to be designed narrow in order to lower ground resistance and dangerous voltage below to the permitted safety values. In addition, ground nets are in the shape of square or rectangle depending on the location and size of the facilities and ground contact area, and inner conductors are laid out in grids like the pattern of nets. Nevertheless, with the existing designs, the marginal voltage for safety gets higher as the area is extended further outside, in comparison with that of inner mesh grounding, thus causing much difficulty maintaining them equipotential, and there exist limits in the burial, grounding grid design considering the dangerous voltage of muti-layered model in the constrained sites, was studied.

Design of Substation Grounding Grid for Reduction of Touch Voltage (접촉전압 저감을 위한 변전소 접지망 설계)

  • Choi, J.K.;Kee, H.C.;Jung, G.J.;Kim, B.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2352-2354
    • /
    • 1999
  • The purpose of substation grounding system is to provide reference potential with power system and protect field workers from electrical shock resulted from unsymetrical power system faults. For this purpose, grounding grid should be designed to maintain max, touch voltage under safety criteria in fault conditions. It is difficult, however, to design a safe grounding grid at very resistive or narrow area. This paper describes an example of substation grounding grid design procedures in such areas with very severe design conditions. By using grounding conductors, which is located close to earth surface, earth surface potential could be controlled effectively, so that maximum touch voltages is to be maintained under safety criteria.

  • PDF