• Title/Summary/Keyword: ground-water

Search Result 3,615, Processing Time 0.042 seconds

Towards Efficient Aquaculture Monitoring: Ground-Based Camera Implementation for Real-Time Fish Detection and Tracking with YOLOv7 and SORT (효율적인 양식 모니터링을 향하여: YOLOv7 및 SORT를 사용한 실시간 물고기 감지 및 추적을 위한 지상 기반 카메라 구현)

  • TaeKyoung Roh;Sang-Hyun Ha;KiHwan Kim;Young-Jin Kang;Seok Chan Jeong
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.73-82
    • /
    • 2023
  • With 78% of current fisheries workers being elderly, there's a pressing need to address labor shortages. Consequently, active research on smart aquaculture technologies, centered on object detection and tracking algorithms, is underway. These technologies allow for fish size analysis and behavior pattern forecasting, facilitating the development of real-time monitoring and automated systems. Our study utilized video data from cameras outside aquaculture facilities and implemented fish detection and tracking algorithms. We aimed to tackle high maintenance costs due to underwater conditions and camera corrosion from ammonia and pH levels. We evaluated the performance of a real-time system using YOLOv7 for fish detection and the SORT algorithm for movement tracking. YOLOv7 results demonstrated a trade-off between Recall and Precision, minimizing false detections from lighting, water currents, and shadows. Effective tracking was ascertained through re-identification. This research holds promise for enhancing smart aquaculture's operational efficiency and improving fishery facility management.

The effect of continuous application of the food waste composts on the paddy field environment (음식물류폐기물 활용 퇴비의 장기시용이 논 농업환경에 미치는 영향)

  • Kwon, Soon-Ik;So, Kyu-Ho;Hong, Seung-Gil;Kim, Gun-Yeob;Lee, Jeong-Taek;Seong, Ki-Seog;Kim, Kwon-Rae;Lee, Deog-Bae;Jung, Kwang-Yong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.3
    • /
    • pp.55-70
    • /
    • 2009
  • The long-term effects and the soil environmental changes were examined to ensure the safety of food waste compost in agricultural use. Based on conventional nitrogen application rate of chemical fertilizer, Pig manure compost with $24g\;N\;kg^{-1}$, $8g\;P_2O_5\;kg^{-1}$, and $10.4g\;K_2O\;kg^{-1}$ and food waste compost with $20g\;N\;kg^{-1}$, $20.1g\;P_2O_5\;kg^{-1}$, and $6.5g\;K_2O\;kg^{-1}$ were applied to the paddy soil in $2{\times}2{\times}2m$ lysimeter in which paddy rice (Oryza sativa L. var Chucheong) were grown. The rice grown where food waste compost applied showed better growth responses than control, whereas less yield rate than chemical fertilizer applied. The contents of organic matter, nitrogen, and phosphorus after experiment were increased with compost applied. In addition, it improved soil aeration by the application of food waste compost, while little difference was observed in the quality of surface, infiltrated, and ground water compared to chemical fertilizer applied or control.

Characteristics of Yeong-dae Garden Recorded in Shijing and Mencius, and Its Perception in the Joseon Dynasty (『시경』과 『맹자』에 기록된 영대(靈臺) 원림의 특성과 조선시대 인식)

  • Lim, Hansol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.4
    • /
    • pp.120-136
    • /
    • 2024
  • Yeong-dae(靈臺), Yeong-yu(靈囿), and Yeong-so(靈沼) - so-called 'Yeong-dae Garden' – appear in the poem 'Dae-ah(大雅)․Yeong-dae(靈臺)' in Shijing(詩經) which is considered the record of the earliest garden in East Asia, in the chapter 'Yanghyewang(梁惠王)' of Mencius(孟子). Focusing on those records, this research clarifies their characteristics and discusses the aspects related to garden practices in the Joseon Dynasty. The Yeong-dae Garden is the garden of King Wen of the Zhou Dynasty, who is considered a sage of Confucianism. It is considered to be the first imperial garden in China, and the basic form of all gardens consists of mountains and water. The characteristics of Yeong-dae Garden can be specified through the texts of Shijing and Mencius, the comments written by Zhu Xi and others, and later literature, such as Sambohwangdo. The characteristics of Yeong-dae Garden are as follows: In terms of form, the three spatial elements corresponding to raised ground, a wide area for raising animals, and a pond with fish form a simple arrangement; in terms of function, it combines observation and rest; and in terms of symbolism, it signifies the companionship of the public sentiment and the leader's sincerity. In literature from the Joseon Dynasty, Yeong-dae Garden mainly appear in historical materials related to the King, and its meaning shows an aspect of differentiation into two functions: an observatory for astronomical observation and a garden for rest and appreciation. For the intellectuals of Joseon who sought to restore an ancient ideal state like the Zhou Dynasty through Zhu Xi's Neo-Confucianism, the Yeong-dae Garden served as a control device to warn against royal garden's practices and a symbolic mechanism to expand its meaning of existence to good politics.

LC-MS/MS analysis and antioxidant activity of Dendropanax morbiferus extract. (황칠나무(Dendropanax morbiferus) 잎 추출물의 LC-MS/MS 분석 및 항산화 효과)

  • Min Jung Kim;Jae Dong Son;Ye Jin Yang;Ji Woong Heo;Hu Jang Lee;Kwang Il Park
    • Herbal Formula Science
    • /
    • v.32 no.3
    • /
    • pp.235-245
    • /
    • 2024
  • Objective : The study's objective is to assess the components of Dendropanax morbifera (DM) utilizing UPLC-MS/MS and assess their antioxidant properties in order to establish fundamental information for quality control of herbal formulations. Methods : The DM leaves were ground into powder and extracted with water at 80℃. The extract was subsequently concentrated and subjected to freeze-drying for subsequent analysis. The LC-MS/MS analysis was performed using a 1260 series HPLC system and a 3200 QTrap tandem mass system in positive ion mode, with detection conducted at 280 nm. The Folin-Ciocalteu method was employed to measure the phenolic content, while a colorimetric method using aluminum chloride was used to determine the flavonoid content, with gallic acid and quercetin as standards, respectively. The evaluation of antioxidant activity was conducted through the measurement of DPPH radical scavenging activity, by adding the DPPH solution to the extract and recording the absorbance at 517 nm. Results : The UPLC-MS/MS analysis identified five polyphenolic compounds in the DM extract, specifically syringin, 6-hydroxyluteolin 7-O-laminaribioside, shaftoside, rutin, and kaempferol-3-O-rutinoside. The extract was found to contain a total phenolic content of 83.106 ± 0.21 mg GAE/g and a total flavonoid content of 87.963 ± 1.014 mg QE/g. The DM extract demonstrated substantial antioxidant properties, resulting in a reduction of DPPH radicals that was evident at concentrations as low as 40 ㎍/㎖. Conclusions : The study determined important polyphenolic compounds in DM and established its considerable antioxidant efficacy. These findings provide evidence for the efficacy of DM in disease prevention related to oxidative stress and establish a foundation for ensuring quality control in herbal preparations.

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

Study on the Controlling Mechaniques of the Environmental Factors in the Mushroom Growing House in Chonnam Province (전남 지방에 있어서의 양송이 재배에 최적한 환경조건 조절법 분석에 관한 연구)

  • Chung, Byung-Jae;Lee, Eun-Chol
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.32-34
    • /
    • 1974
  • The important results which have been obtained in the investigation can be recapitulated as follows. 1. As demonstrated by the experimental results and analyses concerning their effects in the on-ground type mushroom house, the constructions in relation to the side wall and ceiling of the experimental house showed a sufficient heat insulation on effect to protect insides of the house from outside climatic conditions. 2. As the effect on the solar type experimental mushroom house which was constructed in a half basement has been shown by the experimental results and analyses, it has been proved to be effective for making use of solar heat. However there were found two problems to be improved for putting solar house to practical use in the farm mushroom growing: (1) the construction of the roof and ceiling should be the same as for the on ground type house, and (2) the solar heat generating system should be reconstructed properly. 3. Among several ventilation systems which have been studied in the experiments, the underground earthen pipe and ceiling ventilation, and vertical side wall and ceiling ventilation systems have been proved to be most effective for natural ventilation. 4. The experimental results have shown that ventilation systems such as the vertical side wall and underground ventilation systems are suitable to put to practical use as natural ventilation systems for farm mushroom house. These ventilation systems can remarkably improve the temperature of fresh air which is introduced into the house by heat transfers within the ventilation passages, so as to approach to the desired temperature of the house without any cooling or heating operation. For example, if it is assuming that X is the outside temperature and Y is the amount of temperature adjustment made by the influence of the ventilation system, the relationships that exist between X and Y can be expressed by the following regression lines. Underground iron pipe ventilation system. Y=0.9X-12.8 Underground earthen pipe ventilation system. Y=0.96X-15.11 Vertical side wall ventilation system. Y=0.94X-17.57 5. The experimental results have 8hown that the relationships existing between the admitted and expelled air and the $CO_2$ concentration can be described with experimental regression lines or an exponent equation as follows: 5.1 If it is assumed that X is an air speed cm/sec. and Y is an expelled air speed in cm/sec. in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the regression lines shown below: 5.2 If it IS assumed that X is an admitted volume of air in $m^3$/hr. and Y is an expelled volume of air in $m^3$/hr. in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the regression lines shown below. 5.3 If it is assumed that expelled air speed in emisec. and replacement air speed in cm/sec. at the bed surface in a natural ventilation system are shown as X and Y. respectively, since the Y is a function of the X. the relationships that exist between X and Y can be expressed by the following regression line: GE(100%)-CV (50%) ventilation system. Y=-0.54X+0.84 5.4 If it is assumed that the replacement air speed in cm/sec. at the bed surface is shown as X, and $CO_2$ concentration which is expressed by multiplying 1000 times the actual value of $CO_2$ % is shown as Y, in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the following regression line: GE(100%)-CV(50%) ventilation system. Y=114.53-6.42X 5.5 If it is assumed that the expelled volume of air is shown as X and the $CO_2$ concencration which is expressed by multiplying 1000 times the actual of $CO_2$% is shown as Y in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the following exponent equation: GE(100%)-CV(50%) ventilation system. Y=$127.18{\times}1.0093^{-x}$ 5.6 The experimental results have shown that the ratios of the cross sectional area of the GE and CV vent to the total cubic capacity of the house, required for providing an adequate amount of air in a natural ventilation system, can be estimated as follows: GE(admitting vent of the underground ventilation) 0.3-0.5% (controllable) CV(expelling vent of the ceiling ventilation) 0.8-1.0% (controllable) 6. Among several heating devices which were studied in the experiments, the hot-water boilor which wasmodified to be fitted both as hot-water boiler and as a pressureless steam-water was found most suitable for farm mushroom growing.

  • PDF

Fuel characteristics of Yellow Poplar bio-oil by catalytic pyrolysis (촉매열분해를 이용한 백합나무 바이오오일의 연료 특성)

  • Chea, Kwang-Seok;Jeong, Han-Seob;Ahn, Byoung-Jun;Lee, Jae-Jung;Ju, Young-Min;Lee, Soo-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Bio-oil has attracted considerable interest as one of the promising renewable energy resources because it can be used as a feedstock in conventional petroleum refineries for the production of high value chemicals or next-generation hydrocarbon fuels. Zeolites have been shown to effectively promote cracking reactions during pyrolysis resulting in highly deoxygenated and hydrocarbon-rich compounds and stable pyrolysis oil products. In this study, catalytic pyrolysis was applied to upgrade bio-oil from yellow poplar and then fuel characteristics of upgraded bio-oil was investigated. Yellow Poplar(500 g) which ground 0.3~1.4 mm was processed into bio-oil by catalytic pyrolysis for 1.64 seconds at $465^{\circ}C$ with Control, Blaccoal, Whitecoal, ZeoliteY and ZSM-5. Under the catalyst conditions, bio-oil productions decreased from 54.0%(Control) to 51.4 ~ 53.5%, except 56.2%(Blackcoal). HHV(High heating value) of upgraded bio-oil was more lower than crude bio-oil while the water content increased from 37.4% to 37.4 ~ 45.2%. But the other properties were improved significantly. Under the upgrading conditions, ash and TAN(Total Acid Number) is decrease and particularly important as transportation fuel, the viscosity of bio-oil decreased from 6,933 cP(Control) to 2,578 ~ 4,627 cP. In addition, ZeoliteY was most effective on producing aromatic hydrocarbons and decreasing of from the catalytic pyrolysis.

A Study on the Heritage Value through the Analysis about the Preservation Status of Historic Urban Environment - Focusing in Suwon Hwaseong Fortress - (역사적 도시환경의 보존형태 분석을 통한 유산적 가치 고찰 - 수원 화성을 중심으로 -)

  • Gil, Ji-Hye;Hwang, Kee-Won;Son, Yong-Hoon
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.33 no.2
    • /
    • pp.67-77
    • /
    • 2015
  • The purpose of this paper is to draw historic valuable resources to conserve through the analysis about the preservation status of historic urban environment in Suwon Hwaseong Fortress. As for the conservation of urban environment, it is important to protect the resources showing historical continuity and to manage the resources remaining characteristics of place, the analysis of the preservation status is focused on the perspective of preservation of physical form and land use. This paper makes progress through three phases. First, in order to understand urban environment in Hwaseong Fortress overall, it compares land registration original map in 1911 to current map in 2014 by the four items of topography, water environment, streets and sites. Next, changes of four items in urban environment have been reviewed further by the research of maps, relative literatures, field survey and interview, and are classified according to the criteria of preservation-partially preservation-disappearance. After analysing preservation status, valuable urban historic cultural resources are drawn separately by being preserved continually and by being preserved partially but remaining characteristics of place. As a result, natural factors of topography and waterway and urban factor of streets are remained considerably preserved. And even if these factors are changed, the ground environment features support to understand historic urban context. Second, as preservation of topography, water environment, streets and sites are closely related to each other, integrated conservation frameworks are needed to enhance urban historic landscape. Third, modern historic resources in Hwaseong are remained unchanged and thus it is necessary to understand urban historic environment by the layers of various times besides Joseon Dynasty period. Fourth, historic sites and streets which had been preserved through urban development process are destroyed by recent historic cultural restoration policies, therefore urban historic resources worthy of conservation should be treated prudently.

Inhibition Effect of Phenolic Compounds from Ultra-fine Ground Chrysanthemum indicum L. on Xanthine Oxidase (초미세 분쇄한 감국으로부터 추출된 phenolic 화합물의 xanthine oxidase 저해 효과)

  • Cho, Young-Je;Kim, Byung-Oh;Park, Hye-Jin;Lee, Eun-Ho;Jo, Jae-Bum;Lee, Jae-Eun;Lim, Su-Bin;Kim, Ye-Jin;Park, Ki-Tae;Choi, Moo-Young
    • Journal of Life Science
    • /
    • v.27 no.8
    • /
    • pp.902-908
    • /
    • 2017
  • In this study, the extracted phenolic compounds from 98 species of oriental herbal medicine were examined for biological activities to be used as functional resources. In particular, the anti-gout effect by xanthine oxidase (XOase) inhibition was determined using water and ethanol as extraction solvents because of their non-toxicity in the human body. The extracts of Chrysanthemum indicum L. (83.45%), Cuscuta chinensis (60.22%), Asiasarum sieboldi F. Maekawa (51.66%), Acorus gramineus (67.8%), Aconitum pseudo-laeve var. erectum (75.23%), Thuja orientalis (47.27%), Polygonum aviculare (53.98%), Carthami semen (63.99%), and Syzygium aromaticum (40.22%) showed relatively high XOase inhibitory activity. Chrysanthemum indicum L. was selected for its high XOase inhibitory activity. The biological compounds in Chrysanthemum indicum L. were identified to contain phenolics included in extracts of solids. Ultra-fine grind technology showed a higher extraction yield than normal grind and fine grind technology. Ethanol extracts showed relatively higher XOase inhibitory activity than water extracts. XOase inhibitory activity increased in a dependent manner as phenolic concentration increased. Therefore, ultra-fine grind technology was confirmed for use in increasing the extraction yield of XOase inhibitory compounds from Chrysanthemum indicum L.. Extracts from Chrysanthemum indicum L. are expected to be a useful functional resource for the prevention or treatment of gout.

Effects of Fruits and Stems of Opuntia ficus-indica on Blood Glucose and Lipid Metabolism in Streptozotocin-induced Diabetic Rats (손바닥선인장의 열매와 줄기가 Streptozotocin으로 유발된 당뇨 쥐의 혈당 및 지질대사에 미치는 영향)

  • Yoon, Jin-A;Son, Yong-Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.2
    • /
    • pp.146-153
    • /
    • 2009
  • This study was conducted to examine the effects of fruits and stems of Opuntia ficus-indica var. saboten Makino on water intake, feed intake, body weight, blood glucose level and glucose tolerance in streptozotocin (STZ)-induced diabetic rats. Forty Sprague-Dawley male rats were divided into non-diabetic control (NC), diabetic control (DC), 8% Opuntia fruit (DOF), 5% Opuntia stem (DO-5) and 10% Opuntia stem (DO-10) groups. Fruits and stems of Opuntia ficus-indica were freeze-dried and ground before use in the experiment. Animals were fed experimental diet for 3 weeks. DOF, DO-5 and DO-10 groups showed lower water and feed intake as well as less body weight loss than DC group. The fasting blood glucose levels were 100 mg/dL for NC and 379 mg/dL for DC. Fasting glucose level of DOF was a significantly low level of 28% (p<0.05), whereas DO-5 and DO-10 had a decrease of 5% and 9% compared to DC. As for the glucose tolerance test, the highest blood glucose levels for NC and DC-10 group were observed at 30 minutes after glucose injection while those of DOF and DO-5 groups were after 60 minutes. DOF and DO-5 plasma insulin level improved. Plasma total cholesterol, triglyceride, non-esterified fatty acid (NEFA) and LDL-cholesterol concentrations were also lower in DOF, DO-5 and DO-10 groups, although HDL-cholesterol level was only slightly affected by experimental diets compared to DC. These results suggest that the feeding of Opuntia ficus-indica fruits and stems improved blood glucose and lipid metabolism in STZ-induced diabetic rats.