• Title/Summary/Keyword: ground vibration monitoring

Search Result 42, Processing Time 0.022 seconds

Seismic damage detection of a reinforced concrete structure by finite element model updating

  • Yu, Eunjong;Chung, Lan
    • Smart Structures and Systems
    • /
    • v.9 no.3
    • /
    • pp.253-271
    • /
    • 2012
  • Finite element (FE) model updating is a useful tool for global damage detection technique, which identifies the damage of the structure using measured vibration data. This paper presents the application of a finite element model updating method to detect the damage of a small-scale reinforced concrete building structure using measured acceleration data from shaking table tests. An iterative FE model updating strategy using the least-squares solution based on sensitivity of frequency response functions and natural frequencies was provided. In addition, a side constraint to mitigate numerical difficulties associated with ill-conditioning was described. The test structure was subjected to six El Centro 1942 ground motion histories with different Peak Ground Accelerations (PGA) ranging from 0.06 g to 0.5 g, and analytical models corresponding to each stage of the shaking were obtained using the model updating method. Flexural stiffness values of the structural members were chosen as the updating parameters. In model updating at each stage of shaking, the initial values of the parameter were set to those obtained from the previous stage. Severity of damage at each stage of shaking was determined from the change of the updated stiffness values. Results indicated that larger reductions in stiffness values occurred at the slab members than at the wall members, and this was consistent with the observed damage pattern of the test structure.

An improved approach for multiple support response spectral analysis of a long-span high-pier railway bridge

  • Li, Lanping;bu, Yizhi;Jia, Hongyu;Zheng, Shixiong;Zhang, Deyi;Bi, Kaiming
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.193-200
    • /
    • 2017
  • To overcome the difficulty of performing multi-point response spectrum analysis for engineering structures under spatially varying ground motions (SVGM) using the general finite element code such as ANSYS, an approach has been developed by improving the modelling of the input ground motions in the spectral analysis. Based on the stochastic vibration analyses, the cross-power spectral density (c-PSD) matrix is adopted to model the stationary SVGM. The design response spectra are converted into the corresponding PSD model with appropriate coherency functions and apparent wave velocities. Then elements of c-PSD matrix are summarized in the row and the PSD matrix is transformed into the response spectra for a general spectral analysis. A long-span high-pier bridge under multiple support excitations is analyzed using the proposed approach considering the incoherence, wave-passage and site-response effects. The proposed approach is deemed to be an efficient numerical method that can be used for seismic analysis of large engineering structures under SVGM.

Study of Determination in Measurement System for Safely Managing Debris-Flow (안전한 토석류 관리를 위한 계측기 선정에 관한 연구)

  • Min, Dae-Hong;Yoon, Hyung-Koo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.41-47
    • /
    • 2017
  • Recent studies have shown that there are various systems which can be used to monitor hazardous area in a debris flow location, but lack of methodological research on the exact location where each instrument should be installed has hindered the success of this systems. The objective of this study is to suggest the measurement system for monitoring debris-flow and propose the effective method to determine location of measurement system. Previously studied, from 1991 to 2015, were referred and the applied ratio of every instrument was investigated. The measurement information was divided into 8 categories including rainfall, debris-flow velocity, displacement, fluid pore pressure, ground vibration, image processing, impact force and peak flow depth. The result of this study revealed that the most applied instruments to be rain gauge and geophone for measuring average rainfall and ground vibration respectively. The Analytic Hierarchical Process (AHP) method was selected to determine installation location of instrument and the weighting factors were estimated through fine content, soil thickness, porosity, shear strength, elastic modulus, hydraulic conductivity and saturation. The soil thickness shows highest weights and the fine content relatively demonstrates lowest weights. The score of each position can be calculated through the weighting factors and the lowest score position can be judged as the weak point. The weak point denotes the easily affecting area and thus, the point is suitable for installing the measurement system. This study suggests a better method for safely managing the debris-flow through a precise location for installing measurement system.

Autonomous evaluation of ambient vibration of underground spaces induced by adjacent subway trains using high-sensitivity wireless smart sensors

  • Sun, Ke;Zhang, Wei;Ding, Huaping;Kim, Robin E.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The operation of subway trains induces secondary structure-borne vibrations in the nearby underground spaces. The vibration, along with the associated noise, can cause annoyance and adverse physical, physiological, and psychological effects on humans in dense urban environments. Traditional tethered instruments restrict the rapid measurement and assessment on such vibration effect. This paper presents a novel approach for Wireless Smart Sensor (WSS)-based autonomous evaluation system for the subway train-induced vibrations. The system was implemented on a MEMSIC's Imote2 platform, using a SHM-H high-sensitivity accelerometer board stacked on top. A new embedded application VibrationLevelCalculation, which determines the International Organization for Standardization defined weighted acceleration level, was added into the Illinois Structural Health Monitoring Project Service Toolsuite. The system was verified in a large underground space, where a nearby subway station is a good source of ground excitation caused by the running subway trains. Using an on-board processor, each sensor calculated the distribution of vibration levels within the testing zone, and sent the distribution of vibration level by radio to display it on the central server. Also, the raw time-histories and frequency spectrum were retrieved from the WSS leaf nodes. Subsequently, spectral vibration levels in the one-third octave band, characterizing the vibrating influence of different frequency components on human bodies, was also calculated from each sensor node. Experimental validation demonstrates that the proposed system is efficient for autonomously evaluating the subway train-induced ambient vibration of underground spaces, and the system holds the potential of greatly reducing the laboring of dynamic field testing.

Design and Implementation of Remote Monitoring System for Underground Low Voltage Handhole Using Zigbee Communication (지그비 통신을 이용한 지중저압접속함 원격 모니터링 시스템 설계 및 구현)

  • Weon, La-Kyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.3
    • /
    • pp.58-67
    • /
    • 2019
  • The low-voltage connection box used as a low-voltage transmission line of KEPCO is intended to branch or connect to an underground line. In comparison with the utility considering the aesthetics of the distance, and safety measures are needed. In this paper, temperature and humidity, $CO_2$, water level, acceleration, and vibration sensor are installed inside the underground low voltage handhole, and the sensor data is transmitted to the ground using the Zigbee module. Antenna (Bolted Antenna) for communication with the ground was proposed and the data reception through it was confirmed. In the LF mode and the HEX mode, the transmitted data was confirmed to be a perfect reception success rate. In the case of the bolted antenna, the difference between the ground state and the underwater state was observed as a result of the experiment in the environmental environment. However, It was judged that reception sensitivity was sufficient for communication. The received data could be confirmed through PC based GUI.

Monitoring in-service performance of fibre-reinforced foamed urethane sleepers/bearers in railway urban turnout systems

  • Kaewunruen, Sakdirat
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.1
    • /
    • pp.131-157
    • /
    • 2014
  • Special track systems used to divert a train to other directions or other tracks are generally called 'railway turnout'. A traditional turnout system consists of steel rails, switches, crossings, steel plates, fasteners, screw spikes, timber bearers, ballast and formation. The wheel rail contact over the crossing transfer zone has a dip-like shape and can often cause detrimental impact loads on the railway track and its components. The large impact also emits disturbing noises (either impact or ground-borne noise) to railway neighbors. In a brown-field railway track where an existing aged infrastructure requires renewal or maintenance, some physical constraints and construction complexities may dominate the choice of track forms or certain components. With the difficulty to seek for high-quality timbers with dimensional stability, a methodology to replace aged timber bearers in harsh dynamic environments is to adopt an alternative material that could mimic responses and characteristics of timber in both static and dynamic loading conditions. A critical review has suggested an application of an alternative material called fibre-reinforced foamed urethane (FFU). The full-scale capacity design makes use of its comparable engineering characteristics to timber, high-impact attenuation, high damping property, and a longer service life. A field trial to investigate in-situ behaviours of a turnout grillage system using an alternative material, 'fibre-reinforced foamed urethane (FFU)' bearers, has been carried out at a complex turnout junction under heavy mixed traffics at Hornsby, New South Wales, Australia. The turnout junction was renewed using the FFU bearers altogether with new special track components. Influences of the FFU bearers on track geometry (recorded by track inspection vehicle 'AK Car'), track settlement (based on survey data), track dynamics, and acoustic characteristics have been measured. Operational train pass-by measurements have been analysed to evaluate the effectiveness of the replacement methodology. Comparative studies show that the use of FFU bearers generates higher rail and sleeper accelerations but the damping capacity of the FFU help suppress vibration transferring onto other track components. The survey data analysis suggests a small vertical settlement and negligible lateral movement of the turnout system. The static and dynamic behaviours of FFU bearers appear to equate that of natural timber but its service life is superior.

Prediction Technique of Vibration Induced Settlement -On the Basis of Case Studies (지반 진동에 의한 주변침하 예측기법 사례 연구를 중심으로)

  • 김동수;이진선
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.103-116
    • /
    • 1996
  • Man-made vibrations from traffic and construction activities are important because they may cause damage to structures. The current literature provides that damages in the urban areas were not caused by direct transmission of vibration, but rather through subsequent settlement caused by soil densification. In this paper. prediction technique of ground borne vibration induced settlement was introduced on the basis of case studies. In situ application technique of the settlement prediction model developed in laboratary was described, and the predicted settlement was compared with the measured settlement from case studies. The settlement from case studies hlatched well with the settlement calculated from the model. The parametric studies of settlement in typical urban site conditions were performed to determine the sensitive parameters and to develop reliable vibration monitoring and interpretation schemes. These demonstrated the potential usefulness of the model for the evaluation and prediction of the vibration induced in-situ settlement of sands.

  • PDF

Implementation of IoT System for Wireless Acquisition of Vibration and Environmental Data in Distributing Board (제진형 배전반의 진동 및 환경 데이터수집을 위한 IoT 시스템 구현)

  • Lee, Byeong-Yeong;Lee, Young-Dong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.199-205
    • /
    • 2021
  • The distributing board in directly installed on the ground or the bottom surface of the building, and when vibrations such as earthquakes or external shocks occur, the possibility of damage or malfunction of electric components such as internal power devices, wiring, and protection relays increases. Recently, the need for a seismic type distributing board is increasing, and research and development of a distributing board having a vibration damping function and product launch are being conducted. In this paper, an IoT-based data collection device system capable of measuring vibration and environmental data of distributing board was designed and implemented. When vibration occurred on the distributing board, data was stored and visualized in the MySQL DB through Node-RED for monitoring and data storage using the MQTT protocol for reliable messaging transmission. The test was conducted by attaching the IoT device of the distributing board, and data was collected in real-time and monitored through Node-RED.

Implementation of Data Monitoring and Acquisition System for Real-time Rotating Machinery based on oneM2M (oneM2M 표준 기반 실시간 회전기기 센싱 데이터 수집 및 모니터링 시스템 구현)

  • Lee, Young-Dong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.1
    • /
    • pp.57-62
    • /
    • 2019
  • In this paper, oneM2M based data monitoring and acquisition system is designed and implemented to measure and transmit the voltage, current, temperature, acceleration and vibration of the motor. The proposed system can detect electrical faults (overcurrent, reverse phase, phase loss, ground fault) and mechanical faults (MC counter, motor operation time, bearing and winding temperature, motor speed, insulation resistance). The system consists of sensor data collection, web server, php, database, wired/wireless communication system. The insulation resistance and the motor speed were measured, and the experimental results were similar for both the test resistance value and the reference input value.

Developing a smart structure using integrated DDA/ISMP and semi-active variable stiffness device

  • Karami, Kaveh;Nagarajaiah, Satish;Amini, Fereidoun
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.955-982
    • /
    • 2016
  • Recent studies integrating vibration control and structural health monitoring (SHM) use control devices and control algorithms to enable system identification and damage detection. In this study real-time SHM is used to enhance structural vibration control and reduce damage. A newly proposed control algorithm, including integrated real-time SHM and semi-active control strategy, is presented to mitigate both damage and seismic response of the main structure under strong seismic ground motion. The semi-active independently variable stiffness (SAIVS) device is used as semi-active control device in this investigation. The proper stiffness of SAIVS device is obtained using a new developed semi-active control algorithm based on real-time damage tracking of structure by damage detection algorithm based on identified system Markov parameters (DDA/ISMP) method. A three bay five story steel braced frame structure, which is equipped with one SAIVS device at each story, is employed to illustrate the efficiency of the proposed algorithm. The obtained results show that the proposed control algorithm could significantly decrease damage in most parts of the structure. Also, the dynamic response of the structure is effectively reduced by using the proposed control algorithm during four strong earthquakes. In comparison to passive on and off cases, the results demonstrate that the performance of the proposed control algorithm in decreasing both damage and dynamic responses of structure is significantly enhanced than the passive cases. Furthermore, from the energy consumption point of view the maximum and the cumulative control force in the proposed control algorithm is less than the passive-on case, considerably.