• Title/Summary/Keyword: ground type

검색결과 2,243건 처리시간 0.029초

유출지하수 열원 지열히트펌프시스템의 냉방성능 (Cooling Performance of Ground source Heat Pump using Effluent Ground Water)

  • 박근우;남현규;강병찬
    • 신재생에너지
    • /
    • 제3권4호
    • /
    • pp.47-53
    • /
    • 2007
  • Effluent ground water overflow in deep and broad ground space building. Temperature of effluent ground water is in $12{\sim}20^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effluent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is $800{\sim}1000ton/day$. The heat pump capacity is 5RT each. The heat pump cooling COP is $4.9{\sim}5.2$ for the open type and $4.9{\sim}5.7$ for close type system. The system cooling COP is $3.2{\sim}4.5$ for open type and $3.8{\sim}4.2$ for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

유출지하수 열원 지열히트펌프시스템의 냉방성능 (Cooling Performance of Ground source Heat Pump using Effluent Ground Water)

  • 박근우;남현규;강병찬
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.471-476
    • /
    • 2007
  • Effluent ground water overflow in deep and broad ground space building. Temperature of effluent ground water is in $12{\sim}20^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and c lose type heat pump system using effluent ground water was installed and tested for it church building with large and deep ground space. The effluent flow rate of this building is $800{\sim}1000$ ton/day. The heat pump capacity is 5RT each. The heat pump cooling COP is $4.9{\sim}5.2$ for the open type and $4.9{\sim}5.7$ for close type system. The system cooling COP is $3.2{\sim}4.5$ for open type and $3.8{\sim}4.2$for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

유출지하수 열원 지열히트펌프시스템의 난방성능 (Heating Performance of Ground source Heat Pump using Effluent Ground Water)

  • 박근우;이응열
    • 신재생에너지
    • /
    • 제3권2호
    • /
    • pp.40-46
    • /
    • 2007
  • Effluent ground water overflow in deep and broad ground space building. Temperature of effluent ground water is in $12{\sim}20^{\circ}...$ annually and the quality of that water is as good as well water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is $800{\sim}1000\;ton/day$. The heat pump capacity is 5RT. The heat pump heating COP was $3.85{\sim}4.68$ for the open type and $3.82{\sim}4.69$ for the close type system. The system heating COP including pump power is $3.0{\sim}3.32$ for the open type and $3.32{\sim}3.84$ for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

초전도 부상자석을 이용한 동적 및 정지형 반발식 자기부상 시험기의 수치해석 (Numerical Analysis of Moving Type and Static Type Electrodynamic Suspension Simulator with Superconducting Levitation Magnet)

  • 이응로;배덕권;정윤도;윤용수;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권1호
    • /
    • pp.49-54
    • /
    • 2009
  • This paper presents the numerical simulation results on the moving type electrodynamic suspension (EDS) simulator and static type EDS simulator using high-Tc superconducting (HTS) levitation magnet. The levitation force of the EDS system is formed by the reaction between the moving magnet and the fixed ground conductor. The possible two ways to simulate the EDS system were simulated in this paper by using finite element method (FEM). The first way was the moving type simulator which consists of the fixed HTS magnet and the moving ground conductor. The second way was the static type simulator which consists of the fixed magnet, the fixed ground conductor and the ac current supply system. To verify the characteristics of high speed EDS system with the moving type simulator heavy, large and fast moving ground conductor is needed. The static type simulator can get the characteristics of the high speed EDS system by applying equivalent ac current to velocity, therefore it does not need large moving part. The static type EDS simulator, which can consist of an HTS magnet, the fixed ground conductor(s), an AC power supply and the measuring devices, also test the effect of the shape of the ground conductor easily. The plate type ground conductor made stronger levitation force than ring type ground conductor. Although the outer diameter 335 mm ring type ground conductor (Ring3) was larger than the outer diameter 235 mm ground conductor (Ring2), the levitation force by Ring2 was stronger than that by Ring3. From the calculation results on this paper, the consideration of the magnetic flux distribution according to the levitation height should be included in the process of the ground conductor design.

이중퀜치를 이용한 삼상변압기형 초전도한류기의 삼상지락 고장 종류에 따른 고장전류 제한 특성 분석 (Analysis on Fault Current Limiting Characteristics of Three-Phase Transformer Type SFCL using Double Quench According to Three-Phase Ground-Fault Types)

  • 이신원;한태희;임성훈
    • 한국전기전자재료학회논문지
    • /
    • 제36권6호
    • /
    • pp.614-619
    • /
    • 2023
  • The fault current limiting characteristics of three-phase transformer type superconducting fault current limiter (SFCL), which consisted of three-phase primary and secondary windings wound on E-I iron core, one high-TC superconducting (HTSC) element connected with the secondary winding of one phase and another HTSC element connected in parallel with other two secondary windings of two phases, were analyzed. Unlike other three-phase transformer type SFCLs with three HTSC elements, three-phase transformer type SFCL using double quench has the merit to perform fault current limiting operation for three-phase ground faults with two HTSC elements. To verify its proper three-phase ground fault current limiting operation, three-phase ground faults such as single-line ground, double-line ground and triple-line ground faults were generated in three-phase simulated power system installed with three-phase transformer type SFCL using double quench. From analysis of its fault current limiting characteristics based on tested results, three-phase transformer type SFCL using double quench was shown to be effectively operated for all three-phase ground faults.

유출지하수열원 지열히트펌프의 냉난방성능 (Cooling and Heating Performance of Ground Source Heat Pump using Effluent Ground Water)

  • 박근우;남현규;강병찬
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.434-440
    • /
    • 2007
  • The Effluent ground water overflows in deep and broad ground space building. Temperature of effluent ground water is in 12$\sim$18$^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is 800$\sim$1000 ton/day. The heat pump capacity is 5RT each. The heat pump system heating COP was 3.0$\sim$3.3 for the open type and 3.3$\sim$3.8 for the close type system. The heat pump system cooling COP is 3.2$\sim$4.5 for the open type and 3.8$\sim$4.2 for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

지상도체 변화에 따른 초전도 반발식 자기부상 특성 해석 (Analysis on the Characteristics of the Superconducting Electrodynamic Suspension According to the Variation of the Ground Conductor)

  • 배덕권;조한욱;이종민;한형석;이창영;고태국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1159_1160
    • /
    • 2009
  • 본 논문에서는 초고속 자기부상열차의 유력한 후보가 될 수 있는 초전도 반발식 자기부상의 특성을 연구하기 위한 반발력을 3차원 유한요소 자기 해석을 통하여 계산하고 분석하였다. 본 해석의 결과에 따르면 움직이는 부분이 없는 정지형 시험기는 반발식 자기부상시험기로써 적용될 수 있다.

  • PDF

DCM 타설 지반에 관한 실내모형실험 (Experimental Study on Soft Ground with DCM Column)

  • 홍기권
    • 한국지반신소재학회논문집
    • /
    • 제19권3호
    • /
    • pp.35-44
    • /
    • 2020
  • 본 연구에서는 연약지반에 설치된 DCM 개량체의 개량효과를 개량형식에 따라 정량적으로 비교하기 위하여 일련의 실내모형 실험을 수행하였다. 즉, 무보강 및 3종류의 DCM 개량체 형식에 대한 상재하중 재하에 따른 지반 거동을 재현하고, 지반의 침하량 및 측방변위량을 분석함으로써 DCM 개량형식에 따른 연약지반의 거동을 평가하였다. 먼저, 모형지반에 대한 성토하중 재하시험 결과 무보강의 경우에는 작은 하중 증가에도 침하가 급격히 발생한 반면에, DCM 개량체가 적용된 경우에는 상대적으로 적은 침하가 발생하였다. 그리고 상재하중 증가에 따른 지반의 측방유동 거동을 분석한 결과, 무보강의 경우에는 작은 하중 증가에도 불구하고 측방변위가 크게 발생되었다. 그러나 DCM 개량체가 적용된 경우에는 상대적으로 적은 측방유동이 발생되었으며, 동일한 하중조건에 대한 측방유동 발생량의 크기는 말뚝식, 벽식, 격자식의 순으로 나타남을 확인하였다. 따라서 격자식 DCM 개량체가 적용된 경우가 측방유동에 대하여 우수한 지반개량효과를 나타낸 것으로 평가되었다.

KICT-type 대구경 샘플러의 해상 적용성 검토 (Application of KICT-type Large Diameter Sampler for Offshore Ground Sampling)

  • 김영석;김영진;윤여원;정지원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1365-1369
    • /
    • 2008
  • A large diameter sampler (KICT-type large diameter sampler) was developed to take undisturbed samples from not only soft ground but also sandy and weathered ground. The KICT-type large diameter sampler was manufactured with the principle of triple core barrel sampling. In this study, the applicability to offshore ground sampling of the KICT-type large diameter sampler was confirmed at Inchoen Port construction site. And, in order to compare the quality of samples taken by the sampler with that of the traditional piston sampler, a series of laboratory tests were performed. From the test results, the samples taken by the KICT-type large diameter sampler showed higher quality than the traditional thin-walled tube samples.

  • PDF

PHC 파일 기초를 이용한 지중 열교환기 개발 및 성능 평가 (Development & Performance Evaluation of Ground Heat Exchanger Utilizing PHC Pile Foundation of Building)

  • 유형규
    • 한국태양에너지학회 논문집
    • /
    • 제28권5호
    • /
    • pp.56-64
    • /
    • 2008
  • The objective of this study is to develope ground heat exchanger using PHC file used to building foundation, and it's element technology. So we construct PHC ground heat exchanger in the apartment house's PHC foundation and evaluate it's performance. First, we study PHC file type, heat exchanger pipe, grouting materials, and present apartment house's foundation condition for PHC ground heat exchanger and design it's proto type. Second according to grouting materials, we estimate construction convenience, and it's performance. Construction convenience side, PB 22 A pipe and sand grouting with moisture was good for PHC ground heat exchanger elements. Experiment result is very superior. Thermal conductivity B, C type(sand, gravel) was respectively 32.4 W/m$^{\circ}C$, 36.5 W/m$^{\circ}C$, D(concrete) Type 27.8 W/m$^{\circ}C$, E(bentonite) Type 19.6 W/m$^{\circ}C$. Thermal interference for 4 day experiment period in 3.8 m was very small. So PHC file is good for using ground heat exchanger.