• Title/Summary/Keyword: ground support

Search Result 959, Processing Time 0.026 seconds

Random vibration and deterministic analyses of cable-stayed bridges to asynchronous ground motion

  • Soyluk, K.;Dumanoglu, A.A.;Tuna, M.E.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.231-246
    • /
    • 2004
  • In this paper, a comparison of various random vibration and deterministic dynamic analyses of cable-stayed bridges subjected to asynchronous ground motion is presented. Different random vibration methods are included to determine the dynamic behaviour of a cable-stayed bridge for various ground motion wave velocities. As a numerical example the Jindo Bridge located in South Korea is chosen and a 413 DOF mathematical model is employed for this bridge. The results obtained from a spectral analysis approach are compared with those of two random vibration based response spectrum methods and a deterministic method. The analyses suggest that the structural responses usually show important amplifications depending on the decreasing ground motion wave velocities.

A study on the control for impactless gait of biped robot (이족보행로봇의 비충격 걸음새를 위한 제어에 관한 연구)

  • 박인규;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.536-539
    • /
    • 1997
  • This paper presents a three dimensional modeling and a trajectory generation for minimized impact walking of the biped robot. Inverse dynamic analysis and forward dynamic analysis are performed considering impact force between the foot and ground for determining the actuator capacity and for simulating the proposed biped walking robot. Double support phase walking is considered for close to human's with adding the kinematic constraints on the one of the single support phase.

  • PDF

KOMPSAT-2 COMMERCIAL USER SUPPORT TEAM (KOCUST) - ORGANIZATION AND ITS OPERATIONAL CONCEPTS -

  • Kim, Youn-Soo;Jeun, Gab-Ho;Jeun, Jung-Nam;Blet, Didier
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.808-811
    • /
    • 2006
  • The KOMPSAT-2 was developed by KARI and it was successfully launched from Plesetsk, Russia on 28th July 2006. The Korean government decided the commercialization of the KOMPSAT-2 image data and direct reception services worldwide. SPOT Image, based in Toulouse (France) was selected by KARI through an international open bidding as a foreign company for the KOMPSAT-2 image promotion over the entire world except the territory of Republic of Korea including the North Korea, the United States of America, UAE, Saudi Arabia, Kuwait, Qatar, Oman, Yemen, Egypt, Iran, Iraq, Jordan, Lebanon, and Syria. KAI (Korea Aerospace Industry Ltd.) is an engaged Korean company for this area. KARI has responsibility to operate the satellite, data acquisition, archiving for the worldwide commercialization. For the processing and delivery of the KOMPSAT-2 image data to the users of KAI and SPOT Image, KAI has the binding contract with KARI. So KAI has the responsibility for the commercial ground station operation such as user support, data processing, and the data delivery. The KOMPSAT-2 ground station is hosted in KARI, so KARI has developed the concept of KOCUST (KOMPSAT-2 Commercial User Support Team) jointly with KAI to support the data processing and delivery as KOMPSAT-2 developer and satellite operator. The main purpose of the KOCUST is to support the operational activities to provide the data and service quality to satisfy customers. KOCUST will be organized by the members of KARI and KAI together. KARI members will mainly take the role of KOCUST coordination, data processing and user support in a public sector. KAI members are going to take user desk, data validation and delivery et cetera, which are related with users. This paper describes a summarized concepts of KOCUST like organization, dedicated tasks of each part and work flow of daily operation.

  • PDF

A Study on the Behavior of the Retaining Walls with the Improved Top-Down Support System using the Building Structure (건축 구조체를 이용한 개량 역타공법 적용시 흙막이 벽체의 거동 연구)

  • Chun, Byung-Sik;Roh, Bae-Young;Do, Jong-Nam;Rew, Woo-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1666-1672
    • /
    • 2008
  • In this study, it collected and analyzed a construction case of the improved top-down support system application field on a case by case retaining wall method. The behavior of horizontal displacement was analyzed according to retaining wall type after reviewing a design stage and estimated horizontal displacement under the construction. The study results showed that it is judged stable until excavation termination irrelevant to a retaining wall method at the improved top-down support system application. It is judged that the settlement of behind ground can minimize because the retaining wall head displacement also behave stably. It was compared the predicted horizontal displacement in design and the measured horizontal displacement acquired through a measurement by using Elasto-Plastic analysis program. The comparison results showed that a similar horizontal displacement was predicted within stability standard irrelevant to a retaining wall method. So, it is decided that the advanced prediction is reasonable by Elasto-Plastic analysis in design applied the improved top-down support system. In the case of the ground anchor method application under a same condition, it is decided that a horizontal displacement will more increase than the improved top-down support system is applied. If a section condition is same, it was decided that to apply top-down support system is more stable than that.

  • PDF

Evaluation on the Performance of Deep Excavation by Using PIV Technique

  • Abbas, Qaisar;Song, Ju-sang;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.191-210
    • /
    • 2017
  • The concern study, present the results of experimental study on the performance of deep excavation by using image processing technique particle image velocimetry (PIV). The purpose of present study is to check the application of PIV for the successive ground deformation during deep excavation. To meet the objectives of concern study, a series of reduce scale model test box experiments are performed by considering the wall stiffness, ground water table effect and ground relative density. The results are presented in form of contour and vector plots and further based on PIV analysis wall and ground displacement profile are drawn. The results of present study, indicate that, the PIV technique is useful to demonstrate the ground deformation zone during the successive ground excavation as the degree of accuracy in PIV analysis and measured results with LVDT are within 1%. Further the vector and contours plot effectively demonstrate the ground behavior under different conditions and the PIV analysis results fully support the measured results.

Multi-point response spectrum analysis of a historical bridge to blast ground motion

  • Haciefendioglu, Kemal;Banerjee, Swagata;Soyluk, Kurtulus;Koksal, Olgun
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.897-919
    • /
    • 2015
  • In this study, the effects of ground shocks due to explosive loads on the dynamic response of historical masonry bridges are investigated by using the multi-point shock response spectrum method. With this purpose, different charge weights and distances from the charge center are considered for the analyses of a masonry bridge and depending on these parameters frequency-varying shock spectra are determined and applied to each support of the two-span masonry bridge. The net blast induced ground motion consists of air-induced and direct-induced ground motions. Acceleration time histories of blast induced ground motions are obtained depending on a deterministic shape function and a stationary process. Shock response spectrums determined from the ground shock time histories are simulated using BlastGM software. The results obtained from uniform and multi-point response spectrum analyses cases show that significant differences take place between the uniform and multi-point blast-induced ground motions.

Antioxidant System-Inducing Effects of Jeju Ground Water in C57BL/6 Mice against Gamma-ray Radiation

  • Kim, A-Reum-Da-Seul;Jee, Young-Heun;You, Ho-Jin;Hyun, Jin-Won
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • Recently, we reported that Jeju ground water contains vanadium components and exerts antioxidant effects in vitro and in vivo via the scavenging of reactive oxygen species and enhancement of antioxidant enzyme activities. In the present study, the antioxidant actions of Jeju ground water were compared with those of tap water against gamma-ray radiation in mice. C57BL/6 mice were irradiated with gamma-ray at a dose rate of 2 Gy. The mice were then given tap water or Jeju ground water for 90 days. Jeju ground water compared with tap water enhanced the activities and levels of superoxide dismutase, catalase, and glutathione peroxidase in irradiated liver tissues. Jeju ground water also enhanced the levels of intracellular reduced glutathione, which is vital for normal liver function and repair. These results suggest that vanadium-containing Jeju ground water can safeguard against the harmful actions of gamma-ray radiation through the support of hepatic antioxidant processes.

Geostationary Satellite Station Keeping Robustness to Loss of Ground Control

  • Woo, Hyung Je;Buckwalter, Bjorn
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.65-82
    • /
    • 2021
  • For the vast majority of geostationary satellites currently in orbit, station keeping activities including orbit determination and maneuver planning and execution are ground-directed and dependent on the availability of ground-based satellite control personnel and facilities. However, a requirement linked to satellite autonomy and survivability in cases of interrupted ground support is often one of the stipulated provisions on the satellite platform design. It is especially important for a geostationary military-purposed satellite to remain within its designated orbital window, in order to provide reliable uninterrupted telecommunications services, in the absence of ground-based resources due to warfare or other disasters. In this paper we investigate factors affecting the robustness of a geostationary satellite's orbit in terms of the maximum duration the satellite's station keeping window can be maintained without ground intervention. By comparing simulations of orbit evolution, given different initial conditions and operations strategies, a variation of parameters study has been performed and we have analyzed which factors the duration is most sensitive to. This also provides valuable insights into which factors may be worth controlling by a military or civilian geostationary satellite operator. Our simulations show that the most beneficial factor for maximizing the time a satellite will remain in the station keeping window is the operational practice of pre-emptively loading East-West station keeping maneuvers for automatic execution on board the satellite should ground control capability be lost. The second most beneficial factor is using short station keeping maneuver cycle durations.

3-Dimensional numerical analysis on support performance of early-high-strength shotcrete (3차원 수치해석을 이용한 조기고강도 숏크리트 지보성능 분석)

  • Kim, Jong-Uk;Kim, Jung-Joo;Cho, Young-Jae;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.5
    • /
    • pp.459-470
    • /
    • 2014
  • Now-a-days, the trend in constructing tunnels is to build more deeper, more longer tunnels of greater cross-sections. That's why, the demand of "Early-high-strength shotcrete" is very high because of their advantage of attaining higher strength immediately after excavation, which controls the ground subsidence. So, this study reveals the supporting phenomena of early-high-strength shotcrete, using three-dimensional numerical analysis. The crux of this study can be applied practically in construction sites also. Support Performance of two different qualities of shotcrete was checked out, by keeping the general shotcrete's thickness constant and comparing it with early-high-strength shotcrete's thickness decreasing it gradually in five steps, and analysing/comparing the support performance in all cases. Effect of using early-high-strength shotcrete was analysed to save the cost of steel sets, which are widely used for supporting the ground before the hardening of general shotcrete. The results of numerical analysis on the performance of early-high-strength shotcrete show that, it behaves more effectively under worse ground conditions and it can support the ground more conveniently than steel sets, before the shotcrete is hardened.

A study on the change of strength parameters reinforced rock bolt in the ground around tunnel (록볼트로 보강된 터널주변지반의 강도정수 변화에 대한 연구)

  • Kim, Sang-Hwan;Bang, Gyu-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.1
    • /
    • pp.51-61
    • /
    • 2005
  • In general the strength parameter of the ground will be changed by reinforcing the ground around tunnel. In this case, the concept of tunnel design, such as supporting system, excavation, lining and so on, should be modified based on the failure criteria or the ground changed by the reinforcement. This paper presents the variation mechanism of strength parameters and new failure criteria of the reinforced ground. In order to perform this research, theoretical and experimental works were carried out. It was clearly founded that the cohesion of strength parameters is only increased by reinforcement of ground, especially by rock bolting.

  • PDF