• Title/Summary/Keyword: ground state

Search Result 1,326, Processing Time 0.024 seconds

Application of electrical resistivity for assessing characterizations of frozen and unfrozen soils

  • Dae-Hong Min;Hyung-Koo Yoon
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.205-214
    • /
    • 2024
  • Permafrost refers to the condition where the ground is frozen. It is crucial to review and evaluate the ground's characteristics before construction. In this study, electrical resistivity surveying is chosen as the investigative technique to apply and illustrate the results on the state of permafrost ground and to summarize its applicability. Field experiments are conducted in the Yeoncheon area of South Korea, which has a freezing index of 522.6°C·days. The target area is categorized into two ground conditions: the first where the original ground freezes, and the second involves excavating the original ground up to a depth of 3 meters, backfilling it, and then artificially injecting fluid. Thus, frozen ground conditions are simulated under both natural and artificial circumstances. Electrical resistivity surveys are performed under both above-freezing and sub-zero temperature conditions, with the experiments conducted at sub-zero temperatures revealing relatively more high-resistivity zones due to the temperature conditions. In this area, the distribution of soil moisture content is also investigated using the Time Domain Reflectometry (TDR) technique. It is observed that the ground into which water is artificially injected had a relatively higher moisture content, although the difference is minor. Finally, a 3D map of the target ground is constructed based on the measured electrical resistivity values, and through this, the distribution of porosity, a crucial design parameter, is also depicted. This research demonstrates that the electrical resistivity technique can effectively evaluate the state of frozen and unfrozen ground and further suggests that it can detailed extract the characteristics of the target ground.

Intramolecular Proton Transfers of 2-hydroxy-4,5-naphthotropone

  • Du-Jeon Jang
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.441-444
    • /
    • 1991
  • The intramolecular proton transfers of 2-hydroxy-4,5-naphthotropone in room temperature solutions are studied using static and time-resolved absorption and emission spectroscopy. Dual normal and tautomer fluorescence is observed in ethanol solution, while only the tautomer fluorescence is observed in cyclohexane solution. The fluorescence lifetimes and quantum yields in ethanol and cyclohexane solutions indicate that in hydrocarbon solvents, rapid intersystem crossing competes with proton transfer in the first excited singlet state. Transient absorption spectra and kinetics indicate that proton transfer also undergoes in the first triplet state with a transfer time of ∼ 3 ns. No transient absorption from the tautomer ground state indicates a rapid back proton transfer in the ground state.

Chemical Substitution Effect on Energetic and Structural Differences between Ground and First Electronically Excited States of Thiophenoxyl Radicals

  • Yoon, Jun-Ho;Lim, Jeong Sik;Woo, Kyung Chul;Kim, Myung Soo;Kim, Sang Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.415-420
    • /
    • 2013
  • Effect of chemical substitution at the para-position of the thiophenoxyl radical has been theoretically investigated in terms of energetics, structures, charge densities and orbital shapes for the ground and first electronically excited states. It is found that the adiabatic energy gap increases when $CH_3$ or F is substituted at the para-position. This change is attributed to the stabilization of the ground state of thiophenoxyl radical through the electron-donating effect of F or $CH_3$ group as the charge or spin of the singly-occupied molecular orbital is delocalized over the entire molecule especially in the ground state whereas in the excited state it is rather localized on sulfur and little affected by chemical substitutions. Quantitative comparison of predictions based on four different quantum-mechanical calculation methods is presented.

Ground motion selection and scaling for seismic design of RC frames against collapse

  • Bayati, Zeinab;Soltani, Masoud
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.445-459
    • /
    • 2016
  • Quantitative estimation of seismic response of various structural systems at the collapse limit state is one of the most significant objectives in Performance-Based Earthquake Engineering (PBEE). Assessing the effects of uncertainties, due to variability in ground motion characteristics and random nature of earthquakes, on nonlinear structural response is a pivotal issue regarding collapse safety prediction. Incremental Dynamic Analysis (IDA) and fragility curves are utilized to estimate demand parameters and seismic performance levels of structures. Since producing these curves based on a large number of nonlinear dynamic analyses would be time-consuming, selection of appropriate earthquake ground motion records resulting in reliable responses with sufficient accuracy seems to be quite essential. The aim of this research study is to propose a methodology to assess the seismic behavior of reinforced concrete frames at collapse limit state via accurate estimation of seismic fragility curves for different Engineering Demand Parameters (EDPs) by using a limited number of ground motion records. Research results demonstrate that accurate estimating of structural collapse capacity is feasible through applying the proposed method offering an appropriate suite of limited ground motion records.

Ground effects on wind-induced responses of a closed box girder

  • Mao, Wenhao;Zhou, Zhiyong
    • Wind and Structures
    • /
    • v.25 no.4
    • /
    • pp.397-413
    • /
    • 2017
  • When bridges are constructed with lower heights from the ground, the formed channel between the deck and the ground will inevitably hinder or accelerate the air flow. This in turn will have an impact on the aerodynamic forces on the deck, which may result in unexpected wind-induced responses of bridges. This phenomenon can be referred to "ground effects." So far, no systematic studies into ground effects on the wind-induced responses of closed box girders have been performed. In this paper, wind tunnel tests have been adopted to study the ground effects on the aerodynamic force coefficients and the wind-induced responses of a closed box girder. In correlation with the heights from the ground in two ground roughness, the aerodynamic force coefficients, the Strouhal number ($S_t$), the vortex-induced vibration (VIV) lock-in phenomena over a range of wind velocities, the VIV maximum amplitudes, the system torsional damping ratio, the flutter derivatives, the critical flutter wind speeds and their variation laws correlated with the heights from the ground of a closed box girder have been presented through wind tunnel tests. The outcomes show that the ground effects make the vortex-induced phenomena occur in advance and adversely affect the flutter stability.

Measurement of Soft Ground Foundation and Rock Slope Behavior Using Spiral Bolt Strain Gauge (스파이럴 볼트 변형률계를 이용한 연약지반기초 및 암반사면 거동 계측)

  • Kang, Seong-Seung;Hirata, Atsuo;Jeong, Seong-Hoi;Lee, Woo-Ram;Je, Dong-Kwang;Kim, Dae-Hyeon
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.105-111
    • /
    • 2010
  • This study is to consider applicability of spiral bolt strain gauge as an instrument measuring behavior of soft ground foundation and rock slope. When the instrument was installed on the ground, it can be useful to identify the state of ground behavior because it has the characteristics of flexibility, as well as to apply the ground reinforcement because it has higher pull-out resistance to the ground. From the measurement of behavior to soft ground foundation, the strain shows a stable state in the beginning, then was observed significant change in the upper and the middle of spiral bolt strain gauge after 400 days. This is analyzed that ground loosening, which is due to occurred frequent earthquake of magnitude 1~2 with increased rainfall, lead to the instability of the ground. From the measurement of behavior to rock slope, the strain shows a stable state with very little change in a period of 0~50 days and the biggest strain at 4.2 m (P6) in a period of 50~100 days, then other places except P6 was maintained at a stable state in a period of 100~160 days. The reason is analyzed because that blasting for excavated limestone surrounding was affected to the largest at P6. However, based on the size of strain change by behavior of the soft ground foundation and rock slope, it is considered that the present condition are not effected on stability of retaining structure and rock slope. In conclusion, the proposed spiral bolt strain gauge can be useful to measure behavior of soft ground foundation and rock slope, and also to be measured behavior as well as reinforcement of the target ground.

A Study for DPDT Switch Design with Defected Ground Structure (DGS 구조를 이용한 DPDT 스위치 설계에 관한 연구)

  • An Ka-Ram;Jeoung Myeung-Sub;Lim Jae-Bong;Cho Hong-Goo;Park Jun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.3
    • /
    • pp.132-138
    • /
    • 2005
  • In this paper a DPDT(Double-Pole Double Through) switch with defected ground structure(DGS) is proposed. The equivalent circuit for the proposed switch structure is derived according to based on equivalent circuit of proposed DGS unit structure. The equivalent circuit parameters of DGS unit are extracted by using the circuit analysis method. The on/off operation of the proposed switch is obtained by varying the capacitance of the varactor diode at the defected ground plane. In the case of ON state, the insertion loss of the fabricated DPDT was shown under 1dB. And in OFF state, we found the rejection characteristic over 20dB at the designed frequency 2.45GHz. The experimental results show excellent insertion loss at on state and isolation at off state.

On State Estimation Using Remotely Sensed Data and Ground Measurements -An Overview of Some Useful Tools-

  • Seo, Dong-Jun
    • Korean Journal of Remote Sensing
    • /
    • v.7 no.1
    • /
    • pp.45-67
    • /
    • 1991
  • An overview is given on stochastic techniques with which remotely sensed data may be used together with ground measurements for purposes of state estimation and prediction. They can explicitly account for spatiotemporal differences in measurement characteristics between ground measurements and remotely sensed data, and are suitable for highly variant space or space-time processes, such as atmosperic processes, which may be viewed as (containing) a random process. For state estimation of static ststems, optimal linear estimation is described. As alternatives, various co-kriging estimation techniques are also described, including simple, ordinary, universal, lognormal, disjunctive, indicator, and Bayesian extersion to simple and lognormal. For illustrative purposes, very simple examples of optimal linear estimation and simple co-kriging are given. For state estimation and prediction of dynamic system, distributed-parameter kalman filter is described. Issues concerning actual implemention are given, and with application potential are described.

Molecular Structure and Vibrational Spectra of Biphenyl in the Ground and the Lowest Triplet States. Density Functional Theory Study

  • 이상연
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.93-98
    • /
    • 1998
  • The molecular geometries and harmonic vibrational frequencies of biphenyl in the ground and the first excited triplet states have been calculated using the Hartree-Fock and Becke-3-Lee-Yang-Parr (B3LYP) density functional methods with 6-31G* basis set. Structural change occurs from a twisted benzene-like to a planar quinone-like form upon the excitation to the first excited state. Scaled harmonic vibrational frequencies for the ground state obtained from the B3LYP calculation show good agreement with the available experimental data. A few vibrational fundamentals for both states are newly assigned based on the B3LYP results.

Dynamics and Bleaching of Ground State in CdSe/ZnS Quantum Dots

  • Kim, J.H.;Kyhm, K.
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.4
    • /
    • pp.184-187
    • /
    • 2006
  • For resonant excitation of the ground state $1s^e-1S^h_{3/2}$, dynamics of 'the electron-hole pair in a CdSe quantum dot was investigated by degenerate pump-probe measurement. At low e-h pair densities, the decay of $1s^e-1S^h_{3/2}$ state is dominated by radiative recombination. As the number of the electron-hole pairs increases, new decay features become significant. Theoretical comparison suggests this is attributed to the bi-molecular and Auger-type scattering.