• Title/Summary/Keyword: ground resistance measurement

Search Result 107, Processing Time 0.026 seconds

Grounding Characteristic Analysis of Plate Electrodes

  • Kim, Sung-Sam;Kim, Ju-Chan;Koh, Hee-Seog
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.53-60
    • /
    • 2007
  • In this study, an experiment on the efficient construction method of plate electrodes, the influence of electric potential interference in plate electrodes, and building foundations were explored. The experimental result of the electric potential measurement was taken on the basis of the direction of movement and the condition in which the plate electrodes are laid underground in building foundations. It shows that the construction method of laying the plate electrodes vertically exhibits a more efficient reduction of electric potential in a diagonal direction and on an X axis than laying plates horizontally. For plate electrode construction in an area that has uniform conditions, the parallel joint construction method is more effective than a single construction to reduce earth electrical potential and ground resistance. In addition, a straight arrangement performs well in ground efficiency, compared to the parallel arrangement.

MICROTHERMAL INSTRUMENT FOR MEASURING SURFACE LAYER SEEING

  • Li, Xue-Bao;Zheng, Yan-Fang;Deng, Lin Hua;Xu, Guang
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.19-24
    • /
    • 2012
  • Microthermal fluctuations are introduced by atmospheric turbulence very near the ground. In order to detect microthermal fluctuations at Fuxian Solar Observatory (FSO), a microthermal instrument has been developed. The microthermal instrument consists of a microthermal sensor, which is based on a Wheatstone bridge circuit and uses fine tungsten filaments as resistance temperature detectors, an associated signal processing unit, and a data collection, & communication subsystem. In this paper, after a brief introduction to surface layer seeing, we discuss the instrumentation behind the microthermal detector we have developed and then present the results obtained. The results of the evaluation indicate that the effect of the turbulent surface boundary layer to astronomical seeing would become sufficiently small when installing a telescope at a height of 16m or higher from the ground at FSO.

Establishment of a National Primary Inductance Standard Unit

  • Kim Han Jun;Lee Rae Duk;Semenov Yu. P.;Han Sang Ok
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.283-288
    • /
    • 2005
  • A portable primary inductance standard set that includes a Maxwell-Wien bridge and a 10 mH standard inductor installed in a thermostat has been developed at KRISS. Two auxiliary resistance capacitance networks (analogous to a 'Wagner ground') provide excellent stability of the bridge balance and impose less strict requirements on the components of these networks. Removable capacitance and ac-dc resistance standards used in the bridge arms made it possible to reproduce 10 mH and 100 mH inductance values in the frequency range of 500 Hz to 3 kHz. From investigations of this standard and preliminary comparison with VNIIM (D. I. Mendeleyev Institute for Metrology), the results have demonstrated that the bridge can be used as a part of the transportable inductance standard with a measurement uncertainty within (1-3) $\mu$H/H at frequencies of 1 kHz and 1.6 kHz. The application of the bridge as a constituent part of the transportable standard gives us an opportunity to eliminate the influence of the standard inductors.

Modified Transmission Line Protection Scheme in the Presence of SCC

  • Naeini, Ehsan Mostaghimi;Vaseghi, Behrouz;Mahdavian, Mehdi
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.533-540
    • /
    • 2017
  • Distance relay identifies the type and location of fault by measuring the transmission line impedance. However any other factors that cause miss calculating the measured impedance, makes the relay detect the fault in incorrect location or do not detect the fault at all. One of the important factors which directly changes the measured impedance by the relay is series capacitive compensation (SCC). Another factor that changes the calculated impedance by distance relay is fault resistance. This paper provides a method based on the combination of distance and differential protection. At first, faulty transmission line is detected according to the current data of buses. After that the fault location is calculated using the proposed algorithm on the transmission line. This algorithm is based on active power calculation of the buses. Fault resistance is calculated from the active powers and its effect will be deducted from calculated impedance by the algorithm. This method measures the voltage across SCC by phasor measurement units (PMUs) and transmits them to the relay location via communication channels. The transmitted signals are utilized to modify the voltage signal which is measured by the relay. Different operating modes of SCC and as well as different faults such as phase-to-phase and phase-to-ground faults are examined by simulations.

The Effect of Additive to Corrosion Resistance of Heavy Anti-Corrosive Paint (중방식 도료의 내식성에 미치는 첨가제의 영향)

  • Moon, Kyung-Man;Lee, Myung-Hoon;Kim, Hyun-Myung;Lee, In-Won;Jeon, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.173-176
    • /
    • 2006
  • There are many kinds of protection methods for marine structures by using and environmental condition. Coating protection method, one of these methods is being widely adopted to both all ground and marine structures. In this study, by adding some additives such as Zn powder(Zn), carbon black(CB) to epoxy anti-corrosive paint, the effect to promote corrosion resistance was investigated with electrochemical method. Corrosion potentials with additives shifted to negative direction than no additive. However passivity current density increased than no additive except for Zn(20)+CB(10), especially, additive of Zn(20)+CB(10) showed the smallest passivity current density. Polarization resistance of Zn(20)+CB(10) by both cyclic voltammogram and impedance measurement was the largest value than other additives. And also surface phenomenon by adding Zn(20)+CB(10) was observed a good add condition not showing bubbling than other additives.

  • PDF

A study on Stress Corrosion Cracking of Sensor Wire in Thermally Insulated Underground Pipeline (이중보온관 부식감지선의 응력부식파괴에 관한 연구)

  • Choe, Yun-Je;Kim, Jeong-Gu
    • Korean Journal of Materials Research
    • /
    • v.12 no.2
    • /
    • pp.103-111
    • /
    • 2002
  • The thermally insulated underground pipelines have been used for district heating system. The sensor wire embedded in the insulation was used for monitoring the insulating resistance between the sensor wire and the pipe. The resistance measurement system detects corrosion of steel pipe under insulation. The corrosion and stress corrosion cracking(SCC) characteristics of sensor wire in synthetic ground water were investigated using the electrochemical methods and constant load SCC tests. The polarization tests were used to study the electrochemical behavior of sensor wire. The sensor wire was passivated at temperatures ranging from 25 to $95^{\circ}C$. However, the applied sensing current larger than passive current resulted in breakdown of passive film. The constant load SCC tests were performed to investigate the effects of applied current and load on the fracture behavior. Stress-corrosion cracks initiated at pits that were produced by sensing current. The growth of the pit involves a tunnelling mechanism, which leads to ductile fracture.

The Construction of Safety Measurement Equipment of Grounding Electrode for Distribution System (배전용 접지전극의 안전성 분석 장치 구성)

  • Kang, Moon-Ho;Park, Young-Keun;Jang, Sang-Ok;Won, Yoon-Chan;Lee, Heung-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.218-221
    • /
    • 2005
  • Grounding electrodes as discharge paths to the earth are normally used to ensure the safety of human body and facilities from the over-voltages in distribution power system, and each grounding mode has a prescribed ground resistance value respectively which is applied by the utilities. As the various electrodes for distribution power system are recently developing to improve the performance of them and resolve the problem of space restriction, it is necessary to measure and investigate the safety of human body of developed electrodes. Therefore, in this paper, we provide briefly a technical comparison of two standards, i.e. IEEE Std 80 and the IEC 479-1, and describe the configuration of safety measurement system which can measure the step voltage and the touch voltage of grounding electrodes based on IEEE Std 80.

  • PDF

Resistance of Cementitious Binders against a Fall in the pH at Corrosion Initiation

  • Song, Ha-Won;Jung, Min-Sun;Ann, Ki Yong;Lee, Chang-Hong
    • Corrosion Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.110-115
    • /
    • 2009
  • At the onset of corrosion of steel in concrete, hydrogen ions usually evolve in the process of electrochemical reaction, thereby decreasing the pH of the pore solution, which can be buffered by cement hydration products, as being representatively illustrated by calcium hydroxide. Hence, a fall in the pH is dependent on properties of cement hydration (i.e. hydration products and degree of hydration). The present study tested acid neutralization capacity (ANC) of cementitious binders of OPC(Ordinary Portland Cement), 30% PFA(Pulverized Fuel Ash), 60% GGBS(Ground Granulated Blast Furnace Slag), 10% SF(Silica Fume) to quantify the resistance of cement matrix to a pH fall. Cement pastes were cast at 0.4 of a free W/C ratio with 1.5% chlorides by weight of binder in cast. Powder samples obtained crushed and ground specimen after 200 days of curing were diluted in still water combined with different levels of 1M nitric acid solution, ranging from 0.5 to 20 mol/kg. Then, the pH of diluted solution was monitored until any further change in the pH did not take place. It was seen that the pH of the diluted solution gradually decreased as the molar amount of nitric acid increased. At some particular values of the pH, however, a decrease in the pH was marginal, which can be expressed in the peak resistances to a pH fall in the ANC curve. The peaks occurred at the variations in the pH, depending on binder type, but commonly at about 12.5 in the pH, indicate a resistance of precipitated calcium hydroxide. The measurement of water soluble chloride at the end of test showed that the amount of free chloride was significantly increased at the pH corresponding to the peaks in the ANC curve, which may reflect the adsorption of hydration products to chlorides.

Performance Evaluation for the Application of Roof Green Box Unit System Combined with Engineering P.E.Waterproof and Root Penetration Sheet (엔지니어링 PE방수.방근시트가 결합된 박스 유닛형 옥상 녹화 시스템 적용을 위한 성능평가)

  • Oh, Chang-Won;Hong, Jong-Chul;Park, Ki-Bong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.125-131
    • /
    • 2016
  • According to the increment of urban buildings, the demand of eco-environment space will be also increased. Therefore, the artificial ground green system on a roof will be supplied gradually. In this study, the concept of simplification, unification and prefabrication was widely applied to supply green system. Consequently, the box unit system with a continuous soil layer was developed, and adhesive property, wind resistance and insulation property of this system were evaluated for site application. As a results of adhesive property and wind resistance test, comparing with design wind pressure and wind velocity, this system was safe at the height of 100m building located in urban. In addition, results of temperature measurement for 120 days showed 17% higher insulation property at daytime and 45% higher insulation property at night than normal box unit system owing to continuous soil layer.

A Study on the Field Application of a Small Dynamic Cone Penetration Tester Using Hammer Automatic Strike and Penetration Measurement (해머 타격과 관입량 측정이 자동화된 소형 동적콘관입시험기의 현장 적용성 연구)

  • Hwiyoung Chae ;Soondal Kwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.5-11
    • /
    • 2023
  • Economic damage is occurring due to landslides and debris flows that occur when the ground artificially created for roads or photovoltaic power generation facilities is weakened by rainfall such as torrential rain. In order to understand the stability of the artificially created ground, it is very important to check the ground information such as the compositional state and mechanical characteristics of the stratum. However, since most of the investigation sites are steep slopes or there are no access roads, it is not easy to enter the drilling equipment commonly used to check ground information and perform standard penetration tests. In this study, a dynamic cone penetration test (DCP) device using a miniaturized auger drilling equipment and an automatic drop device was developed to check the cone resistance value and the dynamic cone penetration test value and analyze the correlation with the standard penetration test value to confirm its applicability at the mountain solar power generation site. As a result, the cone resistance value is qd = 0.46 N and the dynamic cone penetration test value is Nd = 1.58 N, confirming a value similar to the results of existing researchers to secure its reliability.