• Title/Summary/Keyword: ground resistance measurement

Search Result 107, Processing Time 0.029 seconds

Research on Standards for Protection against Electric Shock in Global Technical Regulations of Fuel Cell Vehicle (연료전지 자동차 세계기술규정의 감전보호기준 연구)

  • HwangBo, Cheon;Lee, Kyu-Myong;You, Kyeong-Jun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.167-183
    • /
    • 2010
  • This paper analyzes the backgrounds of the standards for protection against electric shock in Global Technical Regulations (GTR) of Fuel Cell Vehicle (FCV). Targets on research were high voltage criteria, safety current, isolation and grounding resistance, time limitation, energy, adequate clearance, and test procedure. Based on human impedance and effect of current in IEC 60479-1, safety of human was examined. Then, isolation and grounding circuit model of FCV were analyzed theoretically. The results give several suggestions: touch voltage less than 25V, AC energy less than 0.0813J, separation considering middle finger length, grounding resistance less than $0.2\Omega$, maximum AC ground voltage of 1V (rms), and isolation resistance between earth and electrical chassis. In MATLAB/Simulink environment, error characteristics of isolation resistance measurement procedure using internal DC sources were analyzed under variations of internal resistance of voltmeter and isolation resistance.

A Study on the Measurement of Electric Resistance of Footwear (신발의 전기저항 측정에 관한 연구)

  • Choi, Sang-Won;Lee, Seokwon
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.56-62
    • /
    • 2013
  • The occurrence of the ventricular fibrillation is directly dependent on the magnitude and duration of the current. The current which flows through the human body is proportional to the touch voltage applied across the body and is in inverse proportion to the impedances in the circuit. The circuit impedances consist of human body impedance, line impedance, equipment impedance, earth terminal impedance and impedance of shoes which a person put on. The impedance of shoes greatly affect the severity of the electric accidents. The human body impedances relevant to the contact areas, contact conditions, current paths and touch voltages are already determined in the IEC 60479-1. However, the impedance of shoes is ignored or substituted by a simple value because of the absence of the sufficient data. For example, the impedance of shoes plus ground contact resistance is postulated to be $1,000{\Omega}$ in the IEC 61200-612. In IEEE 80, the shoe resistance plus ground contact resistance is assumed to be bare foot with ${\rho}/4b{\Omega}$. In this paper, we measured and analyzed the impedance of shoes with respect to conditions such as applied weight, environment variables and voltages. The results showed that the impedance of shoes is dependent on environment variables regardless of the types of shoes. Most of shoes showed the correlation with the applied force, whereas a few shoes showed characteristics related to the applied voltage. In terms of severity of electric shock, one thirds of test samples indicated to be dangerous in saltwater conditions.

Improvement and Analysis of Chemical Inclination of Municipal Waste Landfill (도시폐기물 매립지반의 개량과 화학적 성향분석)

  • 김영욱;김인규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.03a
    • /
    • pp.83-88
    • /
    • 1994
  • The DDC(dynamic deep compection) was carried out the main method of ground improvement for construction of municipal high way. The project area is composed of the municipal waste dumped, demolished building debris, coal ash and industrial waste made between 1983 and 1989. From the result of fileld measurement, it was found that waste landfill was compressed considerably (15 ~ 20% of full depth), and the strength was increased satisfactorily(20 ~ 120% of original N-value, 55 ~ 230% of original dynamic cone penetration resistance). And the chemical inclination of the municipal waste landfill was analyzed for expection and control of settlement.

  • PDF

A Study on Predominant Periods and Attenuation Characteristics of Ground Motion (지반 탁월주기와 지반 운동특성에 관한 연구)

  • Kim, So-Gu;Cha, Jeong-Sik;Jeong, Hyeong-Sik
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.139-156
    • /
    • 1995
  • A set of field investigations was performed to estimate accurately the predominant periods of seismic 8round motions and the attenuation characteristics of the seismic ground vibration. Predominant periods of ground motions were estimated from the measurement of the continuous microseismic vibratins of certain periods, inherent in the ground and in the buildings, utilizing the high sensitivity digital velocity seismometer consisting of 3-component geophones and a digital seismograph. Estimated predominant periods of microseismic vibraion of the ground(measured on'the ground surface) and the building (measured on the second floor) were in the range of 0.18~0.235 sec. and 0.26~0.31 sec. respectively. The subsurface structure of the site ground was surveyed by the seismic refraction method utilizing the digital seismicwave probing system. The ground structure was found to be a two-layered system : an upper top soil layer of 7m in thickness with the P-wave velocity of 662m1sec and a lower layer of silty-clayey soils with the P -wave velocity of 2210m1 sec. The attenuation characteristics of the seismic ground vibrations were determined by the amplitude decay measurement method us;ng the Seisgun, which produces strong artificial seismic energy. Measured spatial attenuation coefficients of the ground vibration in vertical(Z) longitudinal(X), transverse(Y) direction were 0.1137, 0.0025, and 0.0290 respectively. Estimated Spartial QP's (inverse of the specific dissipation constant w.r.t. shear waved of X, Y, and Z directions were in the range of 5.913~7.575, 32.371~41.452, 2.794~3.579 re spectively. This indicates that aseimic design of the structures on the site should take stronger consideration regarding the earthquake resistance characteristics of the structures against longitudinal ground motion.

  • PDF

Study to Analyze the Grounding System in the 20 kHz Power Installation (20 kHz 전력설비 접지시스템 분석에 관한 연구)

  • Jung, Jin-Soo;Han, Woon-Ki;Park, Chan-Urm;Song, Young-Sang;Lim, Hyun-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1308-1312
    • /
    • 2013
  • In this paper, carried out for optimal ground system for ensuring safety for electricity used to power equipment in the 20 kHz frequency. Now the grounding system of the mesh electrode, electrode rods are installed for power plant safety and protection against electric shock. However, the electrical equipment grounding system in the 20 kHz were considering the increasing grounding impedance due to the high frequency and the magnetic shielding. But until now, there has been little research on the grounding system. To solve this problem, In this paper was proposed optimal grounding system due to the experiment using a mesh electrode, rod electrode, aluminum plate electrodes. Measurement results, grounding resistance was depending on the material of the electrode grounding resistance. In addition, the leakage current (induced) appeared to be affected depending on the type of electrode.

A study of estimation for excess attenuation of Noise propagated on the ground (지표면상을 전파하는 소음의 초과감쇠 산정방법에 관한 연구)

  • Oh, J.E.;Kim, D.G.;Yim, T.K.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.20-25
    • /
    • 1988
  • This study is to explain the characteristic of excess attenuation on the ground through the outdoors experiment about noise propagation and the reduced model experiment of acoustic. The outdoors experiment on the attenuation of noise propagation was tried with the small engine that had large acoustic output, and then it was conformed that there was relationship between the excess attenuation calculated by measurement from distance attenuation and Log(D/(Hs+Hr)). As a result, it was found that the attenuation of noise propogation depended upon the direction of the wind and frequency and was regressed in a straight line. And the numerical values of excess attenuation on the ground could be calculated by regarding Log(D/(Hs+Hr)) as a parameter with an airing resistance $\sigma$. It was found that when the mean square error between the excess attenuation calculated by measurement and the value calculated by a fomula $L=-20Log\mid1+(r_1/r_2)Qexp(ik, \bigtriangleup r)\mid$ about optional $\sigma$ was least, the optimal decision of u was made. As the characteristic of model is the model experiment on a reduced scale of 1 to 40, It was conformed that it corresponds enough with the measurement value with measuring the distance attenuation in the large anecoic chamber.

  • PDF

Measurement and Analysis of Risk Voltages by Various Current Sources in Grounding System (다양한 전류원에 대한 접지시스템의 위험전압 측정과 분석)

  • Kil, Gyung-Suk;Moon, Byoung-Doo;Kim, Hwang-Kuk;Park, Dae-Won;Gil, Hyoung-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.113-118
    • /
    • 2009
  • Grounding systems set the reference voltage level of electric circuits and suppress the Ground Potential Rise (GPR) by flowing fault currents to the ground safely. There are several parameters which evaluate the performance of grounding systems as ground resistance, touch voltage and step voltage. The touch and step voltages, which is called "risk voltage", are especially important to ensure the safety of human body. This paper dealt with the influence of current sources with the different frequency components on the touch and the step voltages. Three types of current sources as commercial frequency, square wave, and surge with the fast risetime of $50\;ns{\sim}500\;ns$ were used to analyze the risk voltages in a grounding system. The risk voltages showed remarkable difference in the same current amplitude depending on the current sources, and increased linearly with the current amplitude in the same current source. From the experimental results, it was confirmed that the risk voltages can be evaluated by a small current application in large-scale grounding systems and the possible largest risk voltage can be calculated by a surge current with the risetime of 200 ns or a current source with the same frequency component as the surge current.

Development and Field Application of Apparatus for Determination of Limit State Design Strength Characteristics in Weathered Ground (한계상태설계법 지반정수 산정을 위한 풍화대 강도특성 측정장치의 개발 및 현장적용에 관한 연구)

  • Kim, Ki Seog;Kim, Jong Hoon;Choi, Sung-oong
    • Tunnel and Underground Space
    • /
    • v.30 no.2
    • /
    • pp.164-179
    • /
    • 2020
  • Applying the limit state design method to geotechnical structures, accuracy and reliability of its design are mainly affected by parameters for geotechnical site characteristics, such as unit weight, Poisson's ratio, deformation modulus, cohesion and frictional angle. When the structures are located in weathered ground, especially, cohesion and frictional angle of ground are closely related with decision of parameters for structures' load and ground's resistance. Therefore, the accurate determination of these parameters, which are commonly obtained from field measurement, such as borehole shear test, are essential for optimum design of geotechnical structures. The 38 case studies, in this study, have been analyzed for understanding the importance of these parameters in designing the ground structures. From these results, importance of field measurement was also ascertained. With these evaluations, an apparatus for determining the strength characteristics, which are fundamental in limit state design (LSD) method, have been newly developed. This apparatus has an improved function as following the ASTM suggestion. Through the field application of this apparatus, the strong point of minimizing the possibility of error occurrence during the measurement has been verified and authors summarized that the essential parameters for LSD can be qualitatively obtained by this apparatus for determination of strength characteristics of weathered ground.

Implementation of a Sensor to Detect the Foot-pushing Force for an Agricultural Transport-convenience Vehicle (농업용 이동편의장치를 위한 발로 미는 힘을 감지하는 센서 구현)

  • Seung-hee, Baek;Ik-hyun, Kwon;Cheong-worl, Kim
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.411-417
    • /
    • 2022
  • In this paper, we propose a sensor with a C-shaped load cell to detect force change when a person sitting on the chair in an electrical transport-convenience vehicle is pushing ground by both heels. The load cell built in the vehicle is mechanically deformed by the vertical force owing to the human weight and the horizontal force by ground-pushing feet. The deformation rate of the load cell and its distribution are simulated using finite element analysis. In the simulation, the applied loads are preset in the range of 10 kg - 100 kg with a step size of 10 kg, and the ground-pushing force by feet is increased to 40 N with a step size of 5 N with respect to each applied load level. The resistance change of the load cell was observed to be linear in simulation as well as in measurement. the maximum difference between simulation and measurement was 0.89 % when the strain gauge constant was 2.243. The constant has a large influence on the difference. The proposed sensor was fabricated by connecting an instrument amplifier and a microcontroller to a load cell and used to detect the force by ground-pushing feet. To detect foot driving, the reference signal was set to 130% of the load, and the duration of the sensor output signal exceeding the reference signal was set to 0.6 s. In a test of a vehicle built with the proposed sensor, the footpushing force by the worker could be successfully detected even when the worker was working.

Resistivity Characteristic of Block in Structure Grounding (구조체 접지에서 블록의 저항률 특성)

  • Koh, Hee-Seog;Kim, Ju-Chan;Jung, Man-Gil;Kim, Sung-Sam
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.280-281
    • /
    • 2006
  • This paper was analyzed fundamental about electrical characteristic of concrete to practical use base of building as Substitution Ground Electrode and Artificial Ground Electrode. 1) Gravel or Sand has a function that makes increase Resistivity of Concrete and Cement has a function that makes decrease Resistivity of Concrete. 2) Moisture Increase Work is so hard because of dry of Block but the Resistivity was decreased when the moisture of Concrete Block was gradually increased. 3) According to the measurement result of moltar and concrete block, ratio relation of Resistance and Resistivity of each block was thirty-fold difference.

  • PDF