• Title/Summary/Keyword: ground measurement

Search Result 1,562, Processing Time 0.032 seconds

Satellite data validation system using RC helicopter

  • Honda, Yoshiaki;Kajiwara, Koji
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.746-749
    • /
    • 2002
  • This paper is introducing a radio control helicopter as a new platform of ground truth measurement. This helicopter is normally used for spraying an agricultural chemical. It can do pinpoint hovering and programing flight using DGPS etc., A spectrometer with dual port can measure ground surface and white reference plate at the same time. And it can also take digital images by digital camera. It is needed to collect ground reflectance information as satellite sensor footprint size for satellite data validation. Generally it is possible to get such ground reflectance by an airplane measurement. But it is high cost and not so easy to make a measurement by airplane. Developed validation system can provide such ground reflectance in low cost and easy.

  • PDF

Estimation of Ground Response Characteristics by Microtremor (미세진동 측정을 통한 지반응답특성 평가)

  • Joh sung-ho;Lee il-wha;Ko hak-song
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.718-721
    • /
    • 2005
  • The purpose of the study is to evaluate the usage of microtremor in estimation of subsurface structure and ground response to ground motion. Ground motion amplification based on site condition of an area is an important parameter for dynamic design. Microtremor cover the characteristics in a low frequency range, while forced vibrations cover them in a high-frequency range. Microtremor consider ground characteristics and offer transfer function in area. To determine the dominant frequency, the passive microtremor measurement is performed and to determine the transfer function of test site, active microtremor measurement is performed. Microtremor measurement in the site is compared with theoretical transfer function calculated from the known structures.

  • PDF

A Study on the Stress Distribution beneath Loaded Ground Surface Area of Double Strata Ground on Soft Clay Layers (연약점토층위 이층지반 지표면 재하시 지중응력 특성연구)

  • Lim, Jong-Seok;Lee, In-Hyung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.423-428
    • /
    • 2005
  • If the load of constructing vehicles during the construction work acts on the road or the ground surface on the soft ground, due to the excess stresses in soils the trafficability of the vehicles influences the constructing efficiency, constructing period and so on. Stress distribution in soils is the very important element to design and to solve the problems of settlement, safety of foundations and trafficability of constructing vehicle in civil engineering. This research represents the comparative estimation of the actual and theoretical measurement on the underground stress of outer layer for each soil after the observation of each top soil layer for its vertical and horizontal stress in (1)homogeneous sand ground (2) weak stratum with the sand soil (3) weak stratum with gravel of the soil model, and it also investigates the effect of subsidence of ground by the repeated load. The underground stress turn out to be different in the value of theoretical and actual measurement after the trial examination of model.

  • PDF

Placement Standard Research of Auxiliary Probes when Measuring Ground Impedance (접지임피던스 측정시 보조전극의 배치 기준 연구)

  • Kim, Dong-Woo;Gil, Hyoung-Jun;Kim, Dong-Ook;Lee, Ki-Yeon;Moon, Hyun-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1984-1991
    • /
    • 2011
  • Among ground impedance measurement methods, the fall-of-potential method is the most thorough and reliable method. In the fall-of-potential method, ground electrode and auxiliary probes are placed in a straight line, and then, auxiliary potential probe is moved away from the ground electrode. The point at which plotted resistance curve flattens out is taken as right position of auxiliary potential probe. However, in some cases, it is hard to place ground electrode and auxiliary probes in a straight line. Therefore, we provided alternative placement method in this research. The method can be easily applicable to placing auxiliary probes. Also, this paper analyzed and compared ground impedance measurement standards of large grounding systems. Based on the analysis, practical measurement method using an earth tester was proposed. The proposed methods presented in this paper will be useful when determining locations of auxiliary probes in alternative positions, and the methods can be applied practically and easily.

Measurement Error Analysis of Ground Resistance Using the Fall-of-Potential Method According to the Locations of Auxiliary Probes (전위강하법에 의한 접지저항 측정시 보조전극의 위치변화에 따른 오차 분석)

  • Kim, Dong-Woo;Gil, Hyoung-Jun;Kim, Dong-Ook;Lee, Ki-Yeon;Moon, Hyun-Wook;Kim, Hyang-Kon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.222-231
    • /
    • 2010
  • This paper presents numerical analysis of measurement errors of ground electrode using the fall-of-potential method. In order to analyze ground resistance error according to the positions of auxiliary probes, firstly, national and international standards were researched. Secondly, numerical ground resistance error of hemispheric electrode was analyzed according to the locations of auxiliary probes and the angle between probes. Then, error-reduced positions of auxiliary probes were shown according to the distance to auxiliary current probe versus ground electrode size. Finally, error compensation method was presented. The results presented in this paper provide useful information regarding ground resistance error of alternative positions of auxiliary probes in case that the auxiliary probes could not be located at the proper position in such cases as there are buildings, roadblock or underground metallic pipe at that position.

The Bearing Capacity of Top Base Foundations in Soft Ground (연약지반상 팽이기초 적용에 따른 지지특성)

  • Kim, Chan-Kuk;Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.401-414
    • /
    • 2010
  • Top Base Foundation(TBF) is a stabilization method for light weight structures particularly in the soft ground. It is widely used for the increment of bearing capacity and restraining settlement of foundations when the bearing capacity of ground is not enough. However, when the design values from exiting Japanese standard are compared with the observation values from the field measurement, the bearing capacity of exiting standard estimated smaller For this reason, it is necessary to establish more reasonable prediction technique considering to understand the behavior of TBF in soft ground. In this study, 1/5 scale model tests were performed in the laboratory. Also, full scale tests were carried out in order to investigate the behavior of TBF with various shapes. In addition, about 100 sites measurement data were evaluated to investigate the behavior of TBF in various ground conditions. Based on the results of the model tests and field measurement data, it was possible to establish more reasonable the bearing capacity equation of TBF considering various N-value of soil, the effect of underground water and failure shapes.

  • PDF

Measurement and Analysis of Ground Impedance according to Arrangement of Auxiliary Probe around Ground Grid (접지 그리드에서의 보조전극 배치에 따른 접지임피던스 측정 및 분석)

  • Gil, Hyoung-Jun;Shong, Kil-Mok;Kim, Young-Seok;Kim, Chong-Min
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.46-50
    • /
    • 2015
  • This paper describes the measurement and analysis of ground impedance according to arrangement of auxiliary probe around ground grid using the fall-of-potential method and the testing techniques to minimize the measuring errors are proposed. The fall-of-potential method involves passing a current between a ground electrode and a current probe, and then measuring the voltage between a ground electrode and a potential probe. To minimize interelectrode influences due to mutual resistances, the current probe is a generally placed at a substantial distance from the ground electrode under test. In order to analyze the effects of ground impedance due to the arrangement of auxiliary probe and frequency, ground impedances were measured in case that the arrangements of auxiliary probe were straight line, perpendicular line, and horizontal line. The distance of current probe was located from 10[m] to 200[m] and the measuring frequency was ranged from 55[Hz] to 513[Hz]. As a consequence, the ground impedance increases with increasing the distance from the ground electrode to the point to be tested, but the ground impedance decreases with increasing the frequency.

Standards for Ground Settlement Management when Reinforcing Ground in the Abandoned Mine (폐광지역 지반공사시 지반침하 관리를 위한 기준)

  • Yang, In Jae;Lee, Seung Ah;Baik, Dong Ho
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.295-302
    • /
    • 2017
  • In this study, a new quantitative instrumentation and measurement standards applicable to the field of mining has been proposed to improve the problems of the current measurement practices that apply the measuring standards of the civil engineering field (road, railway, etc.). With the data coordination of the mine reclamation corporation, we collected data on ground subsidence in the abandoned mine area, and studied various techniques for establishing a new management reference value based on the manual measurement data measured in the field. As a result, new instrumentation and measurement standards is set up and proposed by using statistics like the average value, the third quartile, the 95% confidence, and the maximum value.

Visual Precise Measurement of Pile Rebound and Penetration Movement Using a High-Speed Line-Scan Camera

  • Lim, Mee-Seub;You, Bum-Jae;Oh, Sang-Rok;Han, Song-Soo;Lee, Sang-Hun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.341-346
    • /
    • 2002
  • When a construction company builds a high structure. many piles should be driven into the ground by a hammer whose weight is 7,000 kg in order to make the ground under the structure safe and strong. So. it is essential to determine whether a pile is penetrated into the ground enough to support the weight of the structure since ground characteristics at different locations are different each other. This paper proposes a visual measurement system for pile rebound and penetration movement including vibration using a high-speed line-scan camera and a specially designed mark to recognize two-dimensional motion parameters of the mark using only a line-scan camera. A mark stacking white and black right-angled triangles is used for the measurement, and movement information for vertical distance, horizontal distance and rotational angle is determined simultaneously. Especially- by adopting a line-scan CCD camera whose line rate is 20 ㎑. the measurement performance of dynamic characteristics of the pile at impact instant is improved dramatically.

Measurement of temperature change on coil column unit using FBG sensors during thermal response test: A study for geothermal energy system

  • Young-Sang Kim;Duc-Thang Hoang;Gyeong-O Kang;Ba Huu Dinh
    • Smart Structures and Systems
    • /
    • v.34 no.1
    • /
    • pp.41-50
    • /
    • 2024
  • The accurate measurement of temperature in the ground source heat pump system is crucial for assessing the thermal response of the system and validating the numerical model for parametric study, which is necessary for the thermal performance evaluation of the geothermal energy system. Conventional temperature sensors have some disadvantages such as they are difficult to install, and their position can be shifted during the backfill process of the ground heat exchanger. In this study, Fiber Bragg Grating (FBG) sensors were used to measure the temperature change of a recently developed ground heat exchanger (Coil Column Unit, CCU). FBG sensors were first calibrated in a thermal chamber alongside a correlation sensor (RTD sensor). The calibrated sensors were then mounted on the pipe surface at each spiral of the CCU to measure how temperature changes during the in-door mockup thermal response test. Finally, the measurement results of the FBG sensors were verified with a finite element coded program. The results indicated that the temperature difference between the numerical analysis and the experiment was less than 1%, which is significantly lower than that of the previous study using the RTD sensors. Therefore, it is feasible to apply FBG sensors for temperature measurement during the operation of the TRT of the geothermal energy system.