• Title/Summary/Keyword: ground level floor

Search Result 71, Processing Time 0.027 seconds

Noise and Vibration Characteristics of Floor Impact in a Test Building (표준실험동에서의 소음.진동 특성)

  • Jeong, Young;Yoo, Seung-Yup;Lee, Pyoung-Jik;Jeong, Jeong-Ho;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.92-95
    • /
    • 2005
  • In this study, Heavy-weight floor impact sound and vibration in concrete structures with different slab thickness have been measured in a test building. It was found that natural frequency increased according to increases of slab thickness, and acceleration level decreases. Results also show that the measurements in the 210 and 240mm slab structures are complied with the result from finite element analysis but the In and 180mm slab structures are not because the structures are constrained to the ground. Therefore, in modelling process the condition of sub-structures should be examined in relation to the boundary conditions.

  • PDF

Real-time seismic structural response prediction system based on support vector machine

  • Lin, Kuang Yi;Lin, Tzu Kang;Lin, Yo
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.163-170
    • /
    • 2020
  • Floor acceleration plays a major role in the seismic design of nonstructural components and equipment supported by structures. Large floor acceleration may cause structural damage to or even collapse of buildings. For precision instruments in high-tech factories, even small floor accelerations can cause considerable damage in this study. Six P-wave parameters, namely the peak measurement of acceleration, peak measurement of velocity, peak measurement of displacement, effective predominant period, integral of squared velocity, and cumulative absolute velocity, were estimated from the first 3 s of a vertical ground acceleration time history. Subsequently, a new predictive algorithm was developed, which utilizes the aforementioned parameters with the floor height and fundamental period of the structure as the new inputs of a support vector regression model. Representative earthquakes, which were recorded by the Structure Strong Earthquake Monitoring System of the Central Weather Bureau in Taiwan from 1992 to 2016, were used to construct the support vector regression model for predicting the peak floor acceleration (PFA) of each floor. The results indicated that the accuracy of the predicted PFA, which was defined as a PFA within a one-level difference from the measured PFA on Taiwan's seismic intensity scale, was 96.96%. The proposed system can be integrated into the existing earthquake early warning system to provide complete protection to life and the economy.

Numerical Analysis of the Two-Dimensional Pollutant Dispersion Over Hilly Terrain (산지 내 오염물질 확산의 2차원 수치해석)

  • 김현구;이정묵
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.5
    • /
    • pp.383-396
    • /
    • 1997
  • Numerical prediction of the pollutant dispersion over a two-dimensional hilly terrain is presented. The dispersion model used in the present work is based on the gradient diffusion theory and the finite-volume method on a non-orthogonal boundary-fitted grid system. The numerical model is validated by comparing the results with the available experimental data for the flat-floor dispersion within a turbulent boundary-layer. The numerical error analysis is performed based on the guideline of Kasibhatla et al.(1988) for the elevated-source dispersion in the flat-floor boundary layer having a power-law velocity and linear eddy-diffusivity profile. The influences of the two-dimensional hilly terrain on the dispersion from a continuously released source are numerically investigated by changing the emission locations and heights. It is found that the distributions of ground-level concentration are strongly influenced by the source location and the emission height. Hence, the terrain amplification factor is greatly enhanced when the pollutant source is located within a flow separation region. Dispersion from a source of short duration is also simulated and the duration time of the pollutant is compared at several downstream locations on a hilly terrain. The results of the numerical prediction are applied to the evaluation of environmental impacts due to the automobile exhausts at the seashore highway with a parallel mountain range.

  • PDF

A Case Study on Environmental Vibration Prediction : Ground Vibration Effect near from a Tunnel (환경지반진동의 예측사례 : 터널통과시 미치는 영향)

  • Kim, Jeung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.45-50
    • /
    • 2007
  • When the walls and floor of a tunnel are excited by a train, a ground vibration energy is transmitted to the surface and to footing of a nearby buildings. Excessive vibration affected to a building structure causes undesirable effect to the structural safety and the perception on residents in building. In this paper, a simple approach is introduced to predict how much vibration, in terms of level and spectra, is transmitted through the ground from the tunnel vibration excitation. A high rise building on a tunnel is selected as an application example of this case study.

A Study of Radon Concentration in First Floor and Basement and Prediction of Annual Exposure Rate in Korea (국내 실내 라돈농도와 연간 피폭선량 예측에 관한 연구)

  • Lee, Jong-Dae;Kim, Yoon-Shin;Son, Bu-Soon;Kim, Dae-Seon
    • Journal of Environmental Science International
    • /
    • v.15 no.4
    • /
    • pp.311-317
    • /
    • 2006
  • The purpose of this study was to investigate Rn concentration and annual radiation exposure level in the basement and first floor. The Rn Cup monitors were placed in different environments such as shopping stage, office building, Apartment, Hospital, house in Seoul from Match 1996 to April 1997 and CR-39 films were collected every two months. The mean radon concentration in the basement of house($88.6\;Bq/m^3$) showed the highest level among the areas, while radon concentration on the first floor of house($50.5\;Bq/m^3$) showed the higher than other areas. The annual radiation exposure dose that person on the floor / in the basement of differential place in the seoul can be exposed during living was estimated from 24.11 to 87.64 mRem/yr. This radiation dose is significantly lower than 130mRem maximum radiation dosage from the radon nuclide prescribed by the ICRP, with respect to the overall average exposure of the working adult. this study indicated that possible radon sources on the first floor / in the basement areas are radon intrusion from soil gas, construction materials, or ground water leaking. Further study is needed to quantitatively assess major contributions of radon-222 and health effect to radon exposure.

Transmission of Ground Vibration Produced by Rail Vehicle : Tunnel Effect (지하터널의 진동이 지표면에 미치는 영향)

  • Kim Jeung-Tae;Lee Si-Woo;Kim Jung-Soo
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1095-1100
    • /
    • 2004
  • When the walls and floor of a tunnel are excited by a train, a ground vibration energy is transmitted to the surface and to footing of a nearby buildings. Excessive vibration affected to a building structures causes undesirable effect to the structural safety and the perception on residents in building. In this paper, a simple approach is introduced to predict how much vibration, in terms of level and spectra, is transmitted through the ground from the tunnel vibration excitation. A high rise building on a tunnel is selected as an application example of this case study.

  • PDF

Seismic fragility analysis of sliding artifacts in nonlinear artifact-showcase-museum systems

  • Liu, Pei;Li, Zhi-Hao;Yang, Wei-Guo
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.333-350
    • /
    • 2021
  • Motivated by the demand of seismic protection of museum collections and development of performance-based seismic design guidelines, this paper investigates the seismic fragility of sliding artifacts based on incremental dynamic analysis and three-dimensional finite element model of the artifact-showcase-museum system considering nonlinear behavior of the structure and contact interfaces. Different intensity measures (IMs) for seismic fragility assessment of sliding artifacts are compared. The fragility curves of the sliding artifacts in both freestanding and restrained showcases placed on different floors of a four-story reinforced concrete frame structure are developed. The seismic sliding fragility of the artifacts within a real-world museum subjected to bi-directional horizontal ground motions is also assessed using the proposed IM and engineering demand parameter. Results show that the peak floor acceleration including only values initiating sliding is an efficient IM. Moreover, the sliding fragility estimate for the artifact in the restrained showcase increases as the floor level goes higher, while it may not be true in the freestanding showcase. Furthermore, the artifact is more prone to sliding failure in the restrained showcase than the freestanding showcase. In addition, the artifact has slightly worse sliding performance subjected to bi-directional motions than major-component motions.

Real-time hybrid simulation of smart base-isolated raised floor systems for high-tech industry

  • Chen, Pei-Ching;Hsu, Shiau-Ching;Zhong, You-Jin;Wang, Shiang-Jung
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.91-106
    • /
    • 2019
  • Adopting sloped rolling-type isolation devices underneath a raised floor system has been proved as one of the most effective approaches to mitigate seismic responses of the protected equipment installed above. However, pounding against surrounding walls or other obstructions may occur if such a base-isolated raised floor system is subjected to long-period excitation, leading to adverse effects or even more severe damage. In this study, real-time hybrid simulation (RTHS) is adopted to assess the control performance of a smart base-isolated raised floor system as it is an efficient and cost-effective experimental method. It is composed of multiple sloped rolling-type isolation devices, a rigid steel platen, four magnetorheological (MR) dampers, and protected high-tech equipment. One of the MR dampers is physically tested in the laboratory while the remainders are numerically simulated. In order to consider the effect of input excitation characteristics on the isolation performance, the smart base-isolated raised floor system is assumed to be located at the roof of a building and the ground level. Four control algorithms are designed for the MR dampers including passive-on, switching, modified switching, and fuzzy logic control. Six artificial spectrum-compatible input excitations and three slope angles of the isolation devices are considered in the RTHS. Experimental results demonstrate that the incorporation of semi-active control into a base-isolated raised floor system is effective and feasible in practice for high-tech industry.

Analytical Studies on Seismic Performance of Multi-Story Coupled Piping System in a Low-Rise Building

  • Jung, WooYoung;Ju, BuSeog
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.181-186
    • /
    • 2013
  • The construction costs for nonstructural systems such as mechanical/electrical equipment, ceiling system, and piping system occupy a significant proportion of the total cost. These nonstructural systems can also cause considerable economic losses and loss of life during and after an earthquake. Therefore, reduction of seismic risk of nonstructural components has been emerging as a key aspect of research in recent year. The primary objective of this study was to evaluate the seismic performance of a single-story and multi-story piping system installed in low-rise building and to identify the seismic vulnerability of the current piping systems. The seismic performance evaluation of the piping systems was conducted with 5 different earthquakes to account for the ground motion uncertainty and the preliminary results demonstrated that the maximum displacements of each floor in the multi-story piping system increased linearly with increasing floor level in the building system. This study revealed that the current design piping systems are significantly sensitive to the effect of floor height, which stress the necessity to improve the seismic performance of the current piping systems by, for example, strengthening with seismic sway bracing using transverse/longitudinal bracing cables or hangers.

Intelligent Control of a Virtual Walking Machine for Virtual Reality Interface (가상현실 대화용 가상걸음 장치의 지능제어)

  • Yoon, Jung-Won;Park, Jang-Woo;Ryu, Je-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.926-934
    • /
    • 2006
  • This paper proposes intelligent control of a virtual walking machine that can generate infinite floor for various surfaces and can provide proprioceptive feedback of walking to a user. This machine allows users to participate in a life-like walking experience in virtual environments with various terrains. The controller of the machine is implemented hierarchically, at low-level for robust actuator control, at mid-level fur platform control to compensate the external forces by foot contact, and at high-level control for generating walking trajectory. The high level controller is suggested to generate continuous walking on an infinite floor for various terrains. For the high level control, each independent platform follows a man foot during the swing phase, while the other platform moves back during single stance phase. During double limb support, two platforms manipulate neutral positions to compensate the offset errors generated by velocity changes. This control can, therefore, satisfy natural walking conditions in any direction. Transition phase between the swing and the stance phases is detected by using simple switch sensor system, while human foot motions are sensed by careful calibration with a magnetic motion tracker attached to the shoe. Experimental results of walking simulations at level ground, slope, and stairs, show that with the proposed machine, a general person can walk naturally on various terrains with safety and without any considerable disturbances. This interface can be applied to various areas such as VR navigations, rehabilitation, and gait analysis.