• Title/Summary/Keyword: ground improvement techniques

Search Result 65, Processing Time 0.034 seconds

Seepage-induced Face Stability of n Tunnel with Steel Pipe-reinforced Multistep Grouting (강관 다단 그라우팅으로 보강된 터널의 침투수력을 고려한 막장 안정성 검토)

  • 이인모;이재성;남석우;이형주
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.121-131
    • /
    • 2003
  • Tunneling in difficult geological conditions is often inevitable especially in urban areas. Ground improvement and reinforcement techniques are often required to guarantee safe tunnel excavations and/or to prevent damage to adjacent structures. The steel pipe-reinforced multistep grouting method has been recently applied to tunnel sites in Korea as an auxiliary technique. In this study, the face stability with steel pipe-reinforced multistep grouting was evaluated emphasizing the effect of seepage forces. The study revealed that the influence of the steel pipe-reinforced multistep grouting on the support pressure in dry condition is not significant while there is relatively a large amount of reduction in seepage forces by adopting the technique in saturated condition. The effect of the anisotropy of permeability on the seepage force acting on the tunnel face was also estimated by conducting the coupled analysis. It was found that a higher horizontal permeability compared with the vertical one causes reduction in the seepage farce acting on the tunnel face.

Application of Area Based Matching for the Automation of Interior Orientation (내부표정의 자동화를 위한 영역중심 영상정합기법 적용)

  • 유복모;염재홍;김원대
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.4
    • /
    • pp.321-330
    • /
    • 1999
  • Automation of observation and positioning of fiducial marks is made possible with the application of image matching technique, developed through the cooperative research effort of computer vision and digital photogrammetry. The major problem in such automation effort is to minimize the computing time and to increase the positional accuracy. Except for scanning and ground control surveying, the interior orientation process was automated in this study, through the development of an algorithm which applies the image matching and image processing techniques. The developed system was applied to close-range photogrammetry and the analysis of the results showed 54% improvement in processing time. For fiducial mark observation during interior orientation, the Laplacian of Gaussian transformation and the Hough transformation were applied to determine the accurate position of the center point, and the correlation matching and the least squares matching method were then applied to improve the accuracy of automated observation of fiducial marks. Image pyramid concept was applied to reduce the computing time of automated positioning of fiducial mark.

  • PDF

Geotechnical Applications of Industrial By-products for Reducing Environmental Impacts - ln the Case of Pulverized Coal Fly Ashes -

  • Kazuya Yasuhara;Sumio Horiuchi;Hideo Komine
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.29-62
    • /
    • 2001
  • Based on the results from investigation of behaviour of pulverized fly ashes (PFA) at laboratory and field, the way how to reduce the environmental impacts to geotechnical practices Is considered and described. In order to reduce discharged industrial by-products, it should primarily be emphasized that an effort are made as much as possible not to put into homing. Secondarily, an effort must be made to increase amount of utilization to geotechnical engineering practices. In addition, from an environmental point of view, we should challenge to create innovative materials which are eligible for controlling other wastes and remedying contamination m soils by using industrial byproducts which belong to wastes This Is a new concept in which the polluting materials can be eliminated by making use of wastes. Based on the above-stated concept, the previous and possible utilization of PFA is classified into: (1 ) reclamation, embankment or backfill material, (2) light weight geo-material, (8) soil stabilization/improvement, and (4) environmental material. The reason why PFA, in particular, slurry PFA has been used and will possibly be used more widely is due to the fact that PFA has the advantages : (i) low specific gravity leading to a light weight geomaterial, (ii) high pozzolanic activity enhancing strength, especially due to cement addition, and (iii) spherical shape of particles producing isotropy and then pumpability. As well as the concept of reducing geo-environmental impacts, the present text mainly describes the successful results at laboratory and field which have been obtained by the authors. The most important issue hi application of byproducts including PFA for geotechnical practices is to prevent leakage of polluted substances from sedimentary deposits, ground and earth structures. As one of possible techniques far achieving this purpose, a method of washing off the polluted substances by hot water is described.

  • PDF

Deconstruction fashion design through an analysis of Korean fashion design - Using 3D virtual clothing - (한국적 패션 디자인 분석을 통한 해체주의 패션 디자인 - 3D 가상착의를 기반으로 -)

  • Han, Minjae;Lee, Younhee
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.1
    • /
    • pp.66-87
    • /
    • 2022
  • This study explores the possibility of creating new experimental hanbok designs by accommodating the latest world fashion trends and the changing needs of consumers, in order to attempt to overcome the limitations of traditional Korean fashion design. To do so, We analyze works by contemporary Korean fashion designers to investigate current developments in Korean fashion design and to identify areas of improvement within hanbok design. The results show that most contemporary hanbok designs repeat stereotypes of traditional hanbok with minor modifications. So there arises a need to create new hanbok designs that are clearly distinct from traditional hanbok but also maintain its core features. To develop such designs, I apply the techniques of deconstruction fashion, which allow making experiments with form, composition, and materials use to realize new aesthetics. The use of CLO 3D fashion design software also proves to be very efficient for developing experimental designs. The study results make meaningful contributions to the development of virtual clothing and 3D fashion for hanbok, particularly as metaBUS, a cloud-based research synthesis platform, is rapidly gaining ground, and reality and virtual reality are increasingly mixed in everyday life. This attempt at 3D design of hanbok is expected to trigger more creative experimentation in hanbok design.

Shear wave velocity of fiber reinforced cemented Toyoura silty sand

  • Safdar, Muhammad;Newson, Tim;Schmidt, Colin;Sato, Kenichi;Fujikawa, Takuro;Shah, Faheem
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.207-219
    • /
    • 2021
  • Several additives are used to enhance the geotechnical properties (e.g., shear wave velocity, shear modulus) of soils to provide sustainable, economical and eco-friendly solutions in geotechnical and geo-environmental engineering. In this study, piezoelectric ring actuators are used to measure the shear wave velocity of unreinforced, fiber, cemented, and fiber reinforced cemented Toyoura sand. One dimensional oedometer tests are performed on medium dense specimens of Toyoura sand-cement-fiber-silica flour mixtures with different percentages of silica flour (0-42%), fiber and cement (e.g., 0-3%) additives. The experimental results indicate that behavior of the mixtures is significantly affected by the concentration of silica flour, fiber and cement additives. Results show that with the addition of 1-3% of PVA fibers, the shear wave velocity increases by only 1-3%. However, the addition of 1-4% of cement increases the shear wave velocity by 8-35%. 10.5-21% increase of silica flour reduces the shear wave velocity by 2-5% but adding 28-42% silica flour significantly reduces the shear wave velocity by 12-31%. In addition, the combined effect of cement and fibers was also found and with only 2% cement and 1% fiber, the shear wave velocity increase was found to be approximately 24% and with only 3% cement and 3% fibers this increased to 35%. The results from this study for the normalized shear modulus and normalized mean effective stress agree well with previous findings on pure Toyoura sand, Toyoura silty sand, fiber reinforced, fiber reinforced cemented Toyoura sand. Any variations are likely due to the difference in stress history (i.e., isotropic versus anisotropic consolidation) and the measurement method. In addition, these small discrepancies could be attributed to several other factors. The potential factors include the difference in specimen sizes, test devices, methods of analysis for the measurement of arrival time, the use of an appropriate Ko to convert the vertical stresses into mean effective stress, and sample preparation techniques. Lastly, it was investigated that there is a robust inverse relationship between α factor and 𝞫0 exponent. It was found that less compressible soils exhibit higher 𝜶 factors and lower 𝞫0 exponents.

A Basic Study on Upward Soil Nailing Combined Horizontal Drainage (수평배수공을 겸한 상향식 쏘일네일링 공법의 기초연구)

  • Kim, Hongtaek;Lee, Jungjae;Chung, Jongmin;Choi, Geunhyeok;Lee, In
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.151-158
    • /
    • 2009
  • In the early 1990s, soil nailing was first introduced as method of reinforcement for the slope stability and ground excavation, and as its application was increased the improved soil nailing was also developed. Most recently used for grout soil nailing greatly improve the methods and techniques for self-improvement techniques are classified as soil nailing. As the representative for the grout pressure method to improve the join method pressure grouting and improved method for the self-drilled soil nailing, removable soil nailing, upward soil nailing combined with horizontal drainage system. This paper is to compare upward soil nailing combined with horizontal drainage system with downward direction of the soil nailing. In order to study the limit equilibrium slope stability analysis and comparison with factor of safage, excavation for the vertical displacement for comparison with continuous analysis. According to this study, safage factor is decreased considerably using limit equilibrium analysis and makes no odds for the horizontal displacement when soil nail was installed upward.

  • PDF

Application of Image Processing Techniques to GPR Data for the Reliability Improvement in Subsurface Void Analysis (지표레이더(GPR) 탐사자료를 이용한 지하공동 분석 시 신뢰도 향상을 위한 영상처리기법의 활용)

  • Kim, Bona;Seol, Soon Jee;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.2
    • /
    • pp.61-71
    • /
    • 2017
  • Recently, ground-penetrating radar (GPR) surveys have been actively carried out for precise subsurface void investigation because of the rapid increase of subsidence in urban areas. However, since the interpretation of GPR data was conducted based on the interpreter's subjective decision after applying only the basic data processing, it can result in reliability problems. In this research, to solve these problems, we analyzed the difference between the events generated from subsurface voids and those of strong diffraction sources such as the buried pipeline by applying the edge detection technique, which is one of image processing technologies. For the analysis, we applied the image processing technology to the GRP field data containing events generated from the cavity or buried pipeline. As a result, the main events by the subsurface void or diffraction source were effectively separated using the edge detection technique. In addition, since subsurface voids associated with the subsidence has a relatively wide scale, it is recorded as a gentle slope event unlike the event caused by the strong diffraction source recorded with a sharp slope. Therefore, the directional analysis of amplitude variation in the image enabled us to effectively separate the events by the subsurface void from those by the diffraction source. Interpretation based on these kinds of objective analysis can improve the reliability. Moreover, if suggested techniques are verified to various GPR field data sets, these approaches can contribute to semiautomatic interpretation of large amount of GPR data.

Improvement of Radar Rainfall Estimation Using Radar Reflectivity Data from the Hybrid Lowest Elevation Angles (혼합 최저고도각 반사도 자료를 이용한 레이더 강우추정 정확도 향상)

  • Lyu, Geunsu;Jung, Sung-Hwa;Nam, Kyung-Yeub;Kwon, Soohyun;Lee, Cheong-Ryong;Lee, Gyuwon
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.109-124
    • /
    • 2015
  • A novel approach, hybrid surface rainfall (KNU-HSR) technique developed by Kyungpook Natinal University, was utilized for improving the radar rainfall estimation. The KNU-HSR technique estimates radar rainfall at a 2D hybrid surface consistings of the lowest radar bins that is immune to ground clutter contaminations and significant beam blockage. Two HSR techniques, static and dynamic HSRs, were compared and evaluated in this study. Static HSR technique utilizes beam blockage map and ground clutter map to yield the hybrid surface whereas dynamic HSR technique additionally applies quality index map that are derived from the fuzzy logic algorithm for a quality control in real time. The performances of two HSRs were evaluated by correlation coefficient (CORR), total ratio (RATIO), mean bias (BIAS), normalized standard deviation (NSD), and mean relative error (MRE) for ten rain cases. Dynamic HSR (CORR=0.88, BIAS= $-0.24mm\;hr^{-1}$, NSD=0.41, MRE=37.6%) shows better performances than static HSR without correction of reflectivity calibration bias (CORR=0.87, BIAS= $-2.94mm\;hr^{-1}$, NSD=0.76, MRE=58.4%) for all skill scores. Dynamic HSR technique overestimates surface rainfall at near range whereas it underestimates rainfall at far ranges due to the effects of beam broadening and increasing the radar beam height. In terms of NSD and MRE, dynamic HSR shows the best results regardless of the distance from radar. Static HSR significantly overestimates a surface rainfall at weaker rainfall intensity. However, RATIO of dynamic HSR remains almost 1.0 for all ranges of rainfall intensity. After correcting system bias of reflectivity, NSD and MRE of dynamic HSR are improved by about 20 and 15%, respectively.

COMPARISON OF SURFACE ROUGHNESS OF VARIOUS LAMINATE VENEER PORCELAIN ACCORDING TO POLISHING METHODS (라미네이트 도재 수복물의 연마 방법에 따른 표면 거칠기의 비교)

  • Kwon, Young-Sook;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.2
    • /
    • pp.246-265
    • /
    • 1996
  • After adjusting glazed surface of laminate veneer porcelain by reduction in the clinical procedure, an additional polishing procedure is required to smoothen the roughened surface by reduction, as it is difficult to glaze it again in the furnace. In this study, four kinds of laminate veneer porcelain were ground with diamond points as done in the clinical procedure. The adjusted porcelain surface was polished with Durawhite stone, Ceramiste points, Exa cerapol, Porcelain polishing wheel, Diamond polishing paste. The degree of surface roughness was evaluated with SEM and profilometer at each step, The self glazed surface and the glazed surface with glazing powder were compared with the polished surface and surface roughness of four kinds of laminate veneer porcelain according to the polishing method and step were obserbed. The following results were obtained : 1. There was no difference in the average surface roughness Ra value and the surface roughness obserbed under SEM according to the polishing methods and steps used, among the four kinds of laminate veneer porcelain including Colorlogic, Exelco, Vintage, and Vitadur alpha product. 2. Due to porosities, the surface in the course of polishing by polishing instruments was rougher than the glazed surface, evaluated with a SEM. 3. Insta-Glaze diamond polishing paste has no statistical difference with self glazed group 1, although it has a lower value in average surface roughness Ra value. 4. Group 2 which was glazed with galzing powder was lowest in view of SEM, but it revealed higher surface roughness Ra value than group 1, the glazed surface and group 8, polished by diamond polishing paste, due to surface waveness. 5. Proper surface smoothness could not be in the surface roughness analysis of SEM and profilometer by Shofu laminate polishing kit composed of Diamond point, Durawhite stone and Ceramiste points. Based on the results of this study, the following conclusions can be drawn. We obtain low surface roughness than glazed surface by polishing instruments, but not perfect results clinically. In order to obtain a perfect clinical result or a surface smoothness comparable to glazed porcelain there is a need for further improvement of porcelain materials, condensa-tion techniques, polishing instruments and polishing methods. Furthermore card should be taken not to breakdown the glazed surface during the clinical and laboratory procedure.

  • PDF

State of the Art of the Cyclic Plasticity Models of Structural Steel (구조용 강재의 반복소성모델 분석 연구)

  • Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.735-746
    • /
    • 2002
  • The task of plastic theory is twofold: first, to set up relationships between stress and strain that adequately describe the observed plastic deformation of metals, and second, to develop techniques for using these relationships in studying of the mechanics of metal forming processes, and the anlaysis and design of structures. One of the major problems in the theory of plasticity is to describe the behavior of work-hardening materials in the plastic range for complex loading histories. This can be achieved by formulating constitutive laws either in the integral or differential forms. To adequately predict the response of steel members during cyclic loading, the hardening rule must account for the features of cyclic stress-strain behavior. Neithe of the basic isotropic and kinematic hardening rules is suitable for describing cyclic streess-strain behavior, although a kinematic hardening rule describes the nearly linear portions of the stabilized hystersis loops. There is also a limited expansion of the yield surface as predicted by the isotropic hardening rule. Strong ground motions or wind gusts affect the complex and nonproportional loading histories in the inelastic behavior of structues rather than the proportional loading. Nonproportional loading is defined as externally applied forces on the structure, with variable ratios during the entire loading history. This also includes the rate of time-dependency of the loads. For nonproportional loading histories, unloading may take place along a chord instead of the radius of the load surface. In such cases, the shape of the stress-strain curve has to be determined experimentally for all non-radial loading conditions. The plasticity models including two surface models ae surveyed based on a yield surface and a bound surface that represent a state of maximum stress. This paper is concerned with the improvement of a plasticity models of the two-surface type for structural steel. This is follwed by an overview of plasticity models on structural steel. Finally the need for further research is identified.