• Title/Summary/Keyword: ground improvement techniques

Search Result 67, Processing Time 0.022 seconds

Study for improvement of grounds subjected to cyclic loads

  • Mittal, Satyendra;Meyase, Kenisevi
    • Geomechanics and Engineering
    • /
    • v.4 no.3
    • /
    • pp.191-208
    • /
    • 2012
  • Due to rapid industrialisation, large scale infrastructure development is taking place worldwide. This includes railways, high speed highways, elevated roads etc. To meet the demands of society and industry, many innovative techniques and materials are being developed. In developed nations like USA, Japan etc. for railways applications, new material like geocells, geogrids are being used successfully to enable fast movement of vehicles. The present research work was aimed to develop design methodologies for improvement of grounds subjected to cyclic loads caused by moving vehicles on roads, rail tracks etc. Deformation behavior of ballast under static and cyclic load tests was studied based on square footing test. The paper presents a study of the effect of geo-synthetic reinforcement on the (cumulative) plastic settlement, of point loaded square footing on a thick layer of granular base overlying different compressible bases. The research findings showed that inclusion of geo-synthetics significantly improves the performance of ballasted tracks and reduces the foundation area. If the area is kept same, higher speed trains can be allowed to pass through the same track with insertion of geosynthetics. Similarly, area of machine foundation may also be reduced where geosynthetics is provided in foundation. The model tests results have been validated by numerical modeling, using $FLAC^{3D}$.

An Analysis of Nursing Needs for Hospitalized Cancer Patients;Using Data Mining Techniques (데이터 마이닝을 이용한 입원 암 환자 간호 중증도 예측모델 구축)

  • Park, Sun-A
    • Asian Oncology Nursing
    • /
    • v.5 no.1
    • /
    • pp.3-10
    • /
    • 2005
  • Back ground: Nurses now occupy one third of all hospital human resources. Therefore, efficient management of nursing manpower is getting more important. While it is very clear that nursing workload requirement analysis and patient severity classification should be done first for the efficient allocation of nursing workforce, these processes have been conducted manually with ad hoc rule. Purposes: This study was tried to make a predict model for patient classification according to nursing need. We tried to find the easier and faster method to classify nursing patients that can help efficient management of nursing manpower. Methods: The nursing patient classifications data of the hospitalized cancer patients in one of the biggest cancer center in Korea during 2003.1.1-2003.12.31 were assessed by trained nurses. This study developed a prediction model and analyzing nursing needs by data mining techniques. Patients were classified by three different data mining techniques, (Logistic regression, Decision tree and Neural network) and the results were assessed. Results: The data set was created using 165,073 records of 2,228 patients classification database. Main explaining variables were as follows in 3 different data mining techniques. 1) Logistic regression : age, month and section. 2) Decision tree : section, month, age and tumor. 3) Neural network : section, diagnosis, age, sex, metastasis, hospital days and month. Among these three techniques, neural network showed the best prediction power in ROC curve verification. As the result of the patient classification prediction model developed by neural network based on nurse needs, the prediction accuracy was 84.06%. Conclusion: The patient classification prediction model was developed and tested in this study using real patients data. The result can be employed for more accurate calculation of required nursing staff and effective use of labor force.

  • PDF

Improvement in Grade of Sericite Ore by Dry Beneficiation (건식정제에 의한 견운모광의 품위향상연구)

  • Cho, Keon-Joon;Kim, Yun-Jong;Park, Hyun-Hae;Cho, Sung-Baek
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.212-219
    • /
    • 2009
  • A study on the dry beneficiation of sericite occurring in the Daehyun Mine of the Republic of Korea region as performed by applying selective grinding and air classification techniques. Quartz and sericite occurred in the raw ore as major components. The results of liberation using a ball mill and an impact mill showed that the contents of $R_2O$ were increased while $SiO_2$ was decreased in proportion to decreasing particle size. According to the XRD, XRF analysis and the EDS of SEM analysis, the ball mill gave a better grade product in $R_2O$ content than the impact mill when the particle size was the same. When the raw ore was ground by the impact mill with arotor speed 57.6 m/sec and then followed by 15,000rpm classification using an air classifier, the chemical composition of the over flowed product was 49.65wt% $SiO_2$, 32.15wt% $Al_2O_3$, 0.13wt% $Fe_2O_3$, 10.37wt% $K_2O$, and 0.14wt% $Na_2O$. This result indicates that the $R_2O$ contents were increased by 49.5% compared to that of the raw ore. From these results described above, it is suggested that hard mineral such as Quartz little ground by selective grinding using impact mill whereas soft mineral such as sericite easily ground to small size. As a result of that hard minerals can be easily removed from the finely ground sericite by air classification and the $R_2O$ grade of thus obtained concentrate was improved to higher than 10wt% which can be used for ceramics raw materials.

Application of Pile Net Method to restrain the Soft Ground settlement in Concrete Track (콘크리트궤도 침하억제를 위한 파일네트공법 적용성 검토)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Bang, Eui-Seok;Jung, Jang-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1695-1704
    • /
    • 2008
  • The problems associated with constructing high-speed concrete track embankments over soft compressible soil has lead to the development and/or extensive use of many of the ground improvement techniques used today. Drains, surcharge loading, and geosynthetic reinforcement, have all been used to solve the settlement and embankment stability issues associated with construction on soft soils. However, when time constraints are critical to the success of the project, owners have resorted to another innovative approach. Especially, the design criteria of residual settlement is limited as 30mm for concrete track embankment, it is very difficult to satisfy this standard using the former construction method. Pile net method consist of vertical columns that are designed to transfer the load of the embankment through the soft compressible soil layer to a firm foundation and one or more layers of geosynthetic reinforcement placed between the top of the columns and the bottom of the embankment. This paper will present the guidelines for the design of pile net method to supported embankments. These guidelines were developed based on a review of current design methodologies and a parametric study of design variables using numerical modeling.

  • PDF

Predicting the Young's modulus of frozen sand using machine learning approaches: State-of-the-art review

  • Reza Sarkhani Benemaran;Mahzad Esmaeili-Falak
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.507-527
    • /
    • 2023
  • Accurately estimation of the geo-mechanical parameters in Artificial Ground Freezing (AGF) is a most important scientific topic in soil improvement and geotechnical engineering. In order for this, one way is using classical and conventional constitutive models based on different theories like critical state theory, Hooke's law, and so on, which are time-consuming, costly, and troublous. The others are the application of artificial intelligence (AI) techniques to predict considered parameters and behaviors accurately. This study presents a comprehensive data-mining-based model for predicting the Young's Modulus of frozen sand under the triaxial test. For this aim, several single and hybrid models were considered including additive regression, bagging, M5-Rules, M5P, random forests (RF), support vector regression (SVR), locally weighted linear (LWL), gaussian process regression (GPR), and multi-layered perceptron neural network (MLP). In the present study, cell pressure, strain rate, temperature, time, and strain were considered as the input variables, where the Young's Modulus was recognized as target. The results showed that all selected single and hybrid predicting models have acceptable agreement with measured experimental results. Especially, hybrid Additive Regression-Gaussian Process Regression and Bagging-Gaussian Process Regression have the best accuracy based on Model performance assessment criteria.

A Study on the Preference by Groups and Quality Improvement Surveying of the Important Factor of 3D Spatial Information by Equipment (장비에 따른 3차원 공간정보 품질향상 요인추출 및 집단 간 선호도에 관한 연구)

  • Oh, Min-Kyun;Bea, Sang-Tea;Kim, Tea-Woo;Lee, Jung-Il
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.1
    • /
    • pp.3-21
    • /
    • 2016
  • This study analyzes the key factors of 3D spatial information in accordance with the establishment of aerial and ground equipment fusion, and the quality improvement solutions are delivered from the preference survey. Furthermore, it investigates the factors affecting the quality of the individual technical elements through the establishment of three-dimensional spatial information. It is for identifying the priority which needs to be improved, and this data will be used to identify the evaluation for factors, the technology development and its application. For this purpose, the presence or absence of equality is judged by the quantitative techniques through the preference survey of the gap between the experts of spatial information and survey and the general users who have experiences on 3D spatial information.

Mechanical Characteristics of Kaolin-cement Mixture (카올린-시멘트 혼합재료의 공학적 특성)

  • Lee, Kyu-Hwan;Lee, Song;Yi, Chang-Tok
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.113-125
    • /
    • 2002
  • Ground improvement technique of cement stabilization via Deep Soil Mixing with dry cement is gaining popularity, particularly in Japan and other parts of Southeast Asia and in Scandinavia. Cement can be mixed with deep soft clay deposits, typical of marine environments, to improve the bearing capacity and/or reduce the compressibility of the material so that an otherwise poor site can be developed. However, the strength/deformation behaviour and resulting soil structure of the clay-cement mixture is presently not well understood with respect to both dry and wet mix methods. An extensive laboratory test was carried out to determine the mechanical characteristics of kaolin-cement, with some brief examination of the effects of curing environment. Laboratory tests include triaxial tests, unconfined compression tests, isotropic consolidation testis and oedometer tests. Cement contents up to 10 percent were considered and water curing was employed. Samples were cured for 7 to 112 days while submerged in distilled water. Conventional laboratory tests were also performed. In this paper, the laboratory testing program is described and various sample preparation techniques are discussed. Preliminary triaxial compression test results and trends at varying moisture contents, cement contents, confining pressures and curing times will be presented.

Shear Strength Characteristics of Recycled-Aggregate Porous Concrete Pile for Soft Ground Improvement (순환골재를 활용한 연약지반개량용 다공질 콘크리트 말뚝의 전단특성)

  • Yoon, Gil-Lim;Yoon, Yeo-Won;Kang, O-Ram;You, Seung-Kyong;Lee, Kyu-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.75-84
    • /
    • 2008
  • Recycled-aggregate porous concrete pile (RAPP) which forms a composite ground is one of new ground improvement techniques. In this paper, triaxial compression tests are carried out to investigate the shear strength characteristics of RAPP-Clay composite samples. The main purpose of the tests was to investigate the effects of area replacement ratio ($15%{\sim}100%$) on behaviors of RAPP-Clay samples during shearing. Also, triaxial compression tests using Sand-Clay composite samples were performed to compare with the behaviors of RAPP-Clay samples. The test results showed that the friction angle and cohesion of the RAPP-Clay composite were $18{\sim}34$ degree and $557.0{\sim}588.0\;kPa$, respectively, whereas those of sand-clay composite samples were 26~35 degree of friction angel and $4.0{\sim}18.0\;kPa$.

Analysis of Sand Compaction Piles Under Flexible Surcharge Loading (연성하중을 받는 모래다짐말뚝(SCP)의 거동분석)

  • 홍의준;김재권;정상섬;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.223-233
    • /
    • 2003
  • Sand compaction pile (SCP) is one of the ground improvement techniques which are being used for not only accelerating consolidation but also increasing bearing capacity of loose sands or soft clay grounds. In this study, laboratory model tests and 3-D finite element analyses were performed to investigate the interaction between sand compaction piles and surrounding soft soils. Based on the results obtained, as the area replacement ratio increases, the stress concentration ratio increases at the pile point, the settlement decreases, and the relative displacement between column and soil also decreases. It is also found that numerical study is illustrated by good comparison with model test results, and the numerical analysis revealed slip effects which could not be specifically identified in the model tests.

Numerical Study on Seismic Behavior of a Three-Story RC Shear Wall Structure (3층 전단벽 구조물의 지진응답에 관한 수치해석)

  • Park, Dawon;Choi, Youngjun;Hong, Jung-Wuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.111-119
    • /
    • 2021
  • A shear wall is a structural member designed to effectively resist in-plane lateral forces, such as strong winds and earthquakes. Due to its efficiency and stability, shear walls are often installed in residential buildings and essential facilities such as nuclear power plants. In this research, to predict the results of the shaking table test of the three-story shear wall RC structure hosted by the Korea Atomic Energy Research Institute, three types of numerical modeling techniques are proposed: Preliminary, Calibrated 1, and Calibrated 2 models, in order of improvement. For the proposed models, an earthquake of the 2016 Gyeongju, South Korea (peak ground acceleration of 0.28 g) and its amplified earthquake (peak ground acceleration of 0.50 g) are input. The response spectra of the measuring points are obtained by numerical analysis. Good agreement is observed in the comparisons between the experiment results and the simulation conducted on the finally adopted numerical model, Calibrated 2. In the process of improving the model, this paper investigates the influences of the mode shape, material properties, and boundary conditions on the structure's seismic behavior.