• Title/Summary/Keyword: ground borehole

Search Result 207, Processing Time 0.028 seconds

Electrical Resistivity Imaging for Upper Layer of Shield TBM Tunnel Ceiling (쉴드 TBM터널 상부 지반 연약대 전기탐사)

  • Jung, Hyun-Key;Park, Chul-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.401-408
    • /
    • 2005
  • Recently shield TBM tunnellings are being applied to subway construction in Korean cities. Generally these kinds of tunnellings have the problems in the stability of ground such as subsidence because urban subway is constructed in the shallow depth. A sinkhole occurred on the road just above the tunnel during tunneling in Kwangju, so a survey for upper layer of the tunnel was needed. But conventional Ground Probing Radar can't be applicable due to the presence of steel-mesh screen in the shield segment, so no existent geophysical method is applicable in this site. Because the outer surface of each shield segment is electrically insulated, dipole-dipole resistivity method which is popular in engineering site investigation, was tried to this survey for the first time. Specially manufactured flexible ring-type electrodes were installed into the grouting holes at an interval of 2.4 m on the ceiling. The K-Ohm II system which has been developed by KIGAM and tested successfully in many sites, was used in this site. The system consists of 1000Volt-1Ampere constant-current transmitter, optically isolated 24 bit sigma-delta A/D conversion receiver - maximum 12 channel simultaneous measurements, and graphical automatic acquisition software for easy data quality check in real time. Borehole camera logging with circular white LED lighting was also done to investigate the state of the layer. Measured resistivity data lack of some stations due to failing opening lids of holes, shows general high-low trend well. The dipole-dipole resistivity inversion results discriminate (1) one approximately 4 meter diameter cavity (grouted but incompletely hardened, so low resistivity - less than $30{\Omega}m$), (2) weak zone (100-200${\Omega}m$), and (3) hard zone (high resistivity - more than 1000${\Omega}m$) very well for the distance of 320 meters. The 2-D inversion neglects slight absolute 3-D effect, but we can get satisfactory and useful information. Acquired resistivity section and video tapes by borehole camera logging will be reserved and reused if some problem occurs in this site in the future.

  • PDF

Temperature Log in Boreholes (착정공 온도검층의 이용)

  • 염병우;김형찬
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.2
    • /
    • pp.73-77
    • /
    • 1997
  • Temperature log is an effective method for evaluating the thermal situation and ground water flow path within boreholes. When pumping is proceeding, the continuous temperature logs in a neighboring holt are very helpful to assess connectivity between holes. Mean geothermal gradient is calculated as 26.6$^{\circ}C$/km from 400 bottom hole temperatures, their depths, and the annual mean temperature at each location. Various examples of temperature logs in crystalline rocks are described: first examples show linear increases in homogeneous granitic rocks. Another one illustrates that isolated aquifers have connected each other after a borehole is completed. Slopes of temperature gradient indicate ground water inlet and/or outflow within a borehole. The other log concludes that thermal response in observation borehole induced by pumping is related to the location of interconnected fractures.

  • PDF

Monitoring of Subsurface Temperature Variation as Geothermal Utilization (지종열 활용에 따른 온도변화 모니터링)

  • Lee, Tae-Jong;Shim, Byoung-Ohan;Song, Yoon-Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.6 no.1
    • /
    • pp.29-35
    • /
    • 2010
  • Long-term temperature monitoring has been performed for ground heat exchanger at the Earthquake Research Center (ERC) building in Korea Institute of Geoscience and Mineral Resources (KIGAM). For the 3 years of monitoring, overall temperature increases are observed at various depths within a borehole heat exchanger. But monitoring of ground temperature variation at the monitoring well beforehand showed that geothermal utilization is not the only source for the temperature increase, Because various kinds of sources can cause the ground temperature change, more thorough investigation should be followed.

Ground Stability Assessement for the Mining Induced Subsidence Area (지하공동에 의한 지표침하지역의 지반안정성 평가)

  • 권광수;박연준;신희순;신중호
    • Tunnel and Underground Space
    • /
    • v.4 no.2
    • /
    • pp.170-185
    • /
    • 1994
  • Surface subsidence is one of the problems caused by mined out caverns. Depending on the geologic conditions and mining methods, subsidence can occur in various forms. This report describes the ground stability assessment for the mining induced subsidence area where unfilled caverns still exist abandoned. Geologic features which could affect the stability of the ground were investigated and all the possible geophysical methods were employed to obtain data that could explain the state of the ground in question. Basic rock tests were conducted from the drill cores and rock mass classification was performed by core logging and borehole camera investigation. Numerical analyses were carried out to predict the ground stability using data obtained by various investigations. The result could have been more reliable if in-situ stress were measure and reflected in the numerical analysis.

  • PDF

A Comparison of Soil Characteristics of Excavated Soils in Urban Area (도심지 굴착지반의 지반특성 비교)

  • Kim, Byungchan;Lee, JineHaeng
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2017
  • This is a comparative study on the characteristics of excavated soils, which is proceeded using soil strength parameter by literature, geotechnical investigation, standard penetration test by drilling, and downhole test by borehole at six sites in urban areas. The results of these site surveys are used as basic data for the evaluation and development of prediction of ground subsidence risk. Geotechnical properties are estimated with the result of standard penetration test-N value and literature. The dynamic geotechnical characteristics are also estimated with top-down seismic exploration at borehole.

A Study on the Soft Reclaimed Lands Composed of Shallow Ocean Sediments in Keum River Estuary: Two Dimensional S Wave Velocity and Resolution Obtained by Inverting Surface Waves (금강 하구 천해성 퇴적층의 연약지반에 관한 연구: 표면파 역산에 의한 S파 속도구조와 해상도)

  • Jung, Hee-ok
    • Journal of the Korean earth science society
    • /
    • v.22 no.3
    • /
    • pp.179-185
    • /
    • 2001
  • Borehole tests are commonly used as a tool to obtain the physical properties of soils and rocks. The results of borehole tests are, however, discontinuous. Interpolation methods are applied to interpret the data gap between the borehole test points. The interpolation is valid only if the horizontal variations of the ground between the test points are small enough to ignore. A surface wave inversion method was used to study the S wave velocity of the very soft soil to provide the continuous 2 dimensional S wave velocity structure. The resolution of the S wave velocity structure was used to interpret the inversion results.

  • PDF

Construction of Ground Effective Thermal Conductivity Database for Design of Closed-Loop Ground Heat Exchangers (밀폐형 지중열교환기 설계를 위한 지중 유효열전도도 데이터베이스 구축)

  • Choi, Jae-Ho;Sohn, Byong-Hu;Lim, Hyo-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.776-781
    • /
    • 2008
  • A ground heat exchanger in a GSHP system is an important unit that determines the thermal performance of a system and its initial cost. The Size and performance of this heat exchanger is highly dependent on the thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This paper is part of a research project aiming at constructing a database of these site-specific properties, especially ground effective thermal conductivity. The objective was to develop and evaluation method, and to provide this knowledge to design engineers. To achieve these goals, thermal response tests were conducted using a testing device at nearly 150 locations in Korea. The in-situ thermal response is the temperature development over time when a known heating load imposed, e.g. by circulating a heat carrier fluid through the test exchangers. The line-source model was then applied to the response test data because of its simplicity. From the data analysis, the range of ground effective thermal conductivity at various sites is $1.5{\sim}4.0\;W$/mK. The results also show that the ground effective thermal conductivity varies with grouting materials as well as regional geological conditions and groundwater flow.

  • PDF

Analysis of Thermal Performance of Ground-Source Heat Pump System (지열 이용 히트펌프 시스템의 열성능 해석)

  • Shin, U-Cheul;Baek, Nam-Choon;Kim, Ook-Joong;Koh, Deuk-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.95-101
    • /
    • 2006
  • The purpose of this study is to present the simulation results and an overview of the performance assessment of the Ground-Source Heat Pump(GSHF) system. The calculation was performed for two design factors: the spacing between boreholes and the depth of the vertical ground heat exchangers. And the simulation was carried out using the thermal simulation code TRNSYS with new model of water to water heat pump developed by this study. As a result, it was anticipated that the yearly mean COPs of heat pump for heating and cooling are about 3.7 and 5.8 respectively and the heat pump can supply 100% of heating and cooling load all the year around.

Regional Distribution of Thermal Conductivity of Ground Heat Exchanger for Geothermal Heat Pump System (지열 냉난방 시스템을 위한 열전도도의 지역별 분포)

  • Lim, Hyo-Jae;Shon, Byong-Hu;Jung, Kye-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.511-514
    • /
    • 2007
  • This study was performed to construct a geothermal data base about thermal conductivity of ground heat exchanger and thermal properties of grouting material which used to refill the borehole. We have acquired geothermal data sets from 39 sites over wide area of South Korea except to Jeju island. From data analysis, the range of thermal conductivity is $1.5{\sim}4.0$ W/mK. It means that thermal conductivity varies with grouting material as well as regional geology and ground water system.

  • PDF

Thermal Property Measurement of Bentonite-Based Grouts and Their Effects on Design Length of Vertical Ground Heat Exchanger (벤토나이트 그라우트의 열물성 측정 및 열물성이 수직 지중열교환기 설계 길이에 미치는 영향)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2019
  • In a ground-source heat pump (GSHP) system, a vertical ground heat exchanger (GHE) is widely accepted due to a higher thermal performance. In the vertical GHE, grout (also called grouting material) plays an important role in the heat transfer performance and the initial installation cost of the GHE. Bentonite-based grout has been used in practice because of its high swelling potential and low hydraulic conductivity. This study evaluated the thermo-physical properties of the bentonite-based grouts through lab-scale measurements. In addition, we conducted performance simulation to analyze the effect of mixed ratio of grouts on the design length and thermal performance of the vertical GHE. The simulation results show that thermally-enhanced grouts improve the heat transfer performance of the vertical GHE and thus reduce the design length of GHE pipe.