• Title/Summary/Keyword: ground behaviour

Search Result 283, Processing Time 0.021 seconds

Undisturbed Sampler for Characterizing the Behaviour of Weathered Granite Residual Soils (화강풍화토의 거동 특성 규명을 위한 비교란 시료채취기 개발)

  • 정순용;이승래
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.13-24
    • /
    • 1997
  • In Korea, granite is abundant and occupies around two-thirds of the country's ground. Bven though weathered granite residual soils are widely distributed, undisturbed sampling of this soil is extremely difficult because of the particultate structure. This difficulty has kept away the researchers from investigating !he deformational characteristics of weathered granite residual soil. Thus, a special undisturbed sampling device was developed and undisturbed samples were prepared for triaxial compression (TX), resonant column(RC), and torsional shear (75) tests. Local deformation transducer (LDT) was fabricated for internal strain measurements during TX tests. Both undisturbed samples and statically compacted samples of same density were tested by using TX with LDT, RC, and 75 test equipments. The behaviour of statically compacted specimens was almost the same as that of undisturbed samples in the strain ranges below 1 percent. The stiffness and strength decreased with increasing degree of weathering. In case of undisturbed specimens, strains at failure are widely varied from 2 percent to 11 percent, and planes of failure are irrelevant to the angle of internal friction due to the inhomogeneous nature.

  • PDF

The effect of composite-elastomer isolation system on the seismic response of liquid-storage tanks: Part I

  • Shahrjerdi, A.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.513-528
    • /
    • 2018
  • A typical viable technique to decrease the seismic response of liquid storage tanks is to isolate them at the base. Base-isolation systems are an efficient and feasible solution to reduce the vulnerability of structures in high seismic risk zones. Nevertheless, when liquid storage tanks are under long-period shaking, the base-isolation systems could have different impacts. These kinds of earthquakes can damage the tanks readily. Hence, the seismic behaviour and vibration of cylindrical liquid storage tanks, subjected to earthquakes, is of paramount importance, and it is investigated in this paper. The Finite Element Method is used to evaluate seismic response in addition to the reduction of excessive liquid sloshing in the tank when subjected to the long-period ground motion. The non-linear stress-strain behaviour pertaining to polymers and rubbers is implemented while non-linear contact elements are employed to describe the 3-D surface-to-surface contact. Therefore, Nonlinear Procedures are used to investigate the fluid-structure interactions (FSI) between liquid and the tank wall while there is incompressible liquid. Part I, examines the effect of the flexibility of the isolation system and the tank aspect ratio (height to radius) on the tank wall radial displacements of the tank wall and the liquid sloshing heights. Maximum stress and base shear force for various aspect ratios and different base-isolators, which are subjected to three seismic conditions, will be discussed in Part II. It is shown that the composite-base isolator is much more effective than other isolators due to its high flexibility and strength combined. Moreover, the base isolators may decrease the maximum level pertaining to radial displacement.

KSR- III 킥모터용 노즐의 열탄성 해석 및 시험

  • Cho, In-Hyun;Oh, Seung-Hyub;Yu, Jae-Suk;Rho, Tae-Ho
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.153-162
    • /
    • 2002
  • This paper predicted the engineering constants of spatially reinforced carbon/ carbon composites and analyzed the mechanical behaviour of the kick motor nozzle. Those equivalent engineering constants are used to analyze the mechanical behaviour of the kick motor nozzle. Because the distribution of equivalent engineering constants is varying as change its structure, we made a program to predict engineering constants of spatially reinforced composites. The kick motor nozzle consists of graphite or spatially reinforced carbon/ carbon composites for the nozzle throat, carbon/ phenol for the nozzle entrance and the expansion part, and steel for the outer surface of the expansion part. The 4-D carbon/ carbon composite shows the smallest deformed shape of the nozzle throat, which has a favorable effect on the rocket thrust, and the most uniform deformation of all nozzle throat materials. In addition to analysis, ground firing tests of 4D C/ C nozzle throat and graphite nozzle throat were performed.

  • PDF

Studies on the Behavior of Fish Schools in the Main-Net of a Large Scale Set-Net Using Scanning Sonar ( IV ) - The Behaviour of Trigate mackerel Auxis tapeinosoma School in the Playground and the Catching Function of the Playground- (소나 관찰에 의한 대형정치망내 어군행동의 연구 ( IV ) - 헛통에서 몽치다래 어군의 행동과 헛통의 어획기능)

  • 김문관
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.1
    • /
    • pp.6-12
    • /
    • 1998
  • The moving behaviour of Yellowtail Seriola quinqueradiata schools in the main-net of a large scale set-net was investigated in relation to the catching function of the funnel-net by a scanning sonar. The investigation was took place in the Kishihata set-net fishing ground located in Nanao city Ishigawa prefecture, Japan from Nov. 9 to Nov. 13, 1992. The obtained results are summarized as follows; 1. Fish schools showed the greatest number at the playground in the morning and at the bag-net in the afternoon. The fish schools remained long time in the main-net. 2. The rate of fish school through the funnel-net was smaller than that of fish school which is though the playground and bag-net. Because the Yellowtail school changed the shape of school in passing the funnel-net. 3. The rate of entering the bag-net was 24%, among the fish school heading to the outer funnel-net. But, the rate of escaping to the playground was 27%, among the fish school heading to the inner funnel-net. It seems that the structure of the outer funnel-net was not enough to lead the fish to the bag-net. However, the structure of the inner funnel-net was very effective at preventing escape. 4. It is appropriate to haul the net in the morning in considering the number of accumulated fish in the bag-net during the survey.

  • PDF

Mechanical properties and microstructures of stabilised dredged expansive soil from coal mine

  • Chompoorat, Thanakorn;Likitlersuang, Suched;Sitthiawiruth, Suwijuck;Komolvilas, Veerayut;Jamsawang, Pitthaya;Jongpradist, Pornkasem
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.143-157
    • /
    • 2021
  • Expansive soil is the most predominant geologic hazard which shows a large amount of shrinkage and swelling with changes in their moisture content. This study investigates the macro-mechanical and micro-structural behaviours of dredged natural expansive clay from coal mining treated with ordinary Portland cement or hydrated lime addition. The stabilised expansive soil aims for possible reuse as pavement materials. Mechanical testing determined geotechnical engineering properties, including free swelling potential, California bearing ratio, unconfined compressive strength, resilient modulus, and shear wave velocity. The microstructures of treated soils are observed by scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy to understand the behaviour of the expansive clay blended with cement and lime. Test results confirmed that cement and lime are effective agents for improving the swelling behaviour and other engineering properties of natural expansive clay. In general, chemical treatments reduce the swelling and increase the strength and modulus of expansive clay, subjected to chemical content and curing time. Scanning electron microscopy analysis can observe the increase in formation of particle clusters with curing period, and x-ray diffraction patterns display hydration and pozzolanic products from chemical particles. The correlations of mechanical properties and microstructures for chemical stabilised expansive clay are recommended.

Stress-strain behaviour of reinforced dredged sediment and expanded polystyrenes mixture under cyclic loading

  • Zhou, Yundong;Li, Mingdong;Wen, Kejun;Tong, Ruiming
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.507-513
    • /
    • 2019
  • Reinforced soil and Expanded Polystyrenes (EPS) mixture (RSEM) is a geomaterial which has many merits, such as light weight, wide strength range, easy for construction, and economic feasibility. It has been widely applied to improve soft ground, solve bridge head jump, fill cavity in pipeline and widen highway. Reutilizing dredged sediment to produce RSEM as earthfill can not only consume a large amount of waste sediment but also significantly reduce the construction cost. Therefore, there is an urgent need understand the basic stress-strain characteristics of reinforced dredged sediment-EPS mixture (RDSEM). A series of cyclic triaxial tests were then carried out on the RDSEM and control clay. The effects of cement content, EPS beads content and confining pressure on the cyclic stress-strain behaviour of RDSEM were analyzed. It is found that the three stages of dynamic stress-strain relationship of ordinary soil, vibration compaction stage, vibration shear stage and vibration failure stage are also applicative for RDSEM. The cyclic stress-strain curves of RDSEM are lower than that of control clay in the vibration compaction stage because of its high moisture content. The slopes of backbone curves of RDSEMs in the vibration shear stage are larger than that of control clay, indicating that the existence of EPS beads provides plastic resistance. With the increase of cement content, the cyclic stress-strain relationship tends to be steeper. Increasing cement content and confining pressure could improve the cyclic strength and cyclic stiffness of RDSEM.

Behavioural experiments of Pacific giant octopus (Enteroctopus dofleini) to wooden octopus pot in the tank (동해안 대문어(Enteroctopus dofleini)의 문어상자 행동 실험)

  • KIM, Pyungkwan;SEO, Youngil;JEONG, Seong-Jae;YANG, Jaehyeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.3
    • /
    • pp.199-204
    • /
    • 2022
  • The Pacific giant octopus (Enteroctopus dofleini) is one of the most important species in the East Sea fishery of Korea. The annual production of Pacific giant octopus in 2021 was 3,880 metric ton between Gangwon province and Gyeongsangbuk province. Most of the fishing gears for the octopus fishery were based on behavioral properties such as thigmotaxis and chemotaxis. Wooden octopus box is also one of the fishing gears, which is application of thigmotaxis for the octopus capture in fishing industry. In this study, the tank experiments were designed to examine the behaviour and the effect of surface roughness to the infiltration of the octopus quantitatively. Three different types of octopus boxes were used for the experiments with different surface roughness on the average of 701.6 ㎛, 141.7 ㎛ and 2.09 ㎛ for each gear. 22 trials were conducted from June to September 2021. The normality of the experiments was tested using Shapiro-Wilk normality test (p-value < 0.05). The significance of results was conducted by Kruskal-Wallis rank sum test (Chi-squarded = 21, Degree of freedom = 3, p-value < 0.05). The use of wooden octopus box with rough surface was found to enhance the catch efficiency and observe infiltration behaviour of the octopus frequently.

Investigation of effects of twin excavations effects on stability of a 20-storey building in sand: 3D finite element approach

  • Hemu Karira;Dildar Ali Mangnejo;Aneel Kumar;Tauha Hussain Ali;Syed Naveed Raza Shah
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.427-443
    • /
    • 2023
  • Across the globe, rapid urbanization demands the construction of basements for car parking and sub way station within the vicinity of high-rise buildings supported on piled raft foundations. As a consequence, ground movements caused by such excavations could interfere with the serviceability of the building and the piled raft as well. Hence, the prediction of the building responses to the adjacent excavations is of utmost importance. This study used three-dimensional numerical modelling to capture the effects of twin excavations (final depth of each excavation, He=24 m) on a 20-storey building resting on (4×4) piled raft. Because the considered structure, pile foundation, and soil deposit are three-dimensional in nature, the adopted three-dimensional numerical modelling can provide a more realistic simulation to capture responses of the system. The hypoplastic constitutive model was used to capture soil behaviour. The concrete damaged plasticity (CDP) model was used to capture the cracking behaviour in the concrete beams, columns and piles. The computed results revealed that the first excavation- induced substantial differential settlement (i.e., tilting) in the adjacent high-rise building while second excavation caused the building tilt back with smaller rate. As a result, the building remains tilted towards the first excavation with final value of tilting of 0.28%. Consequently, the most severe tensile cracking damage at the bottom of two middle columns. At the end of twin excavations, the building load resisted by the raft reduced to half of that the load before the excavations. The reduced load transferred to the piles resulting in increment of the axial load along the entire length of piles.

A Study on the Impermeability of Ground using N.D.S and S.M.I methods (N.D.S공법과 S.M.I공법을 이용한 지반차수 방법에 관한 연구)

  • Kim, Ji-Hwan;Kim, Joon-Jeong;Cho, Kook-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.87-92
    • /
    • 2011
  • This paper describes a study on the permeability reduction of the riverbed ground during urban railway tunnel construction. The research is mainly concentrated on the study of the grouting or injection methods among permeability reduction methods which can be adapted in the riverbed ground. The design technology of grouting methods considering the long term hydro-geological behaviour in the riverbed, was suggested. Two injection methods namely, Natural Durable Stabilizer (N.D.S) and Space-Multi Injection Grouting (S.M.I) methods, were introduced as new approach methods which could be adapted to modify the riverbed ground. In order to evaluate the performance of the improved ground by the N.D.S and S.M.I method, a series of pilot tests including the field and laboratory permeability tests, were carried out in the river crossing tunnel construction sites. The results obtained from pilot test program, were also reviewed. The results, the grouting efficiency of the S.M.I method using the non-alkalimeter silica sol is better than that of N.D.S method using cement. In addition, it is anticipated that the current research results are contributed to develop the grouting design technology.

A Study on the Behaviour of Single Piles and Pile Groups in Consolidating Ground from Coupled Consolidation Analyses (연계압밀해석을 통한 압밀이 진행 중인 지반에 근입된 단독말뚝 및 군말뚝의 거동연구)

  • Kim, Sung-Hee;Jeon, Young-Jin;Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.7
    • /
    • pp.15-25
    • /
    • 2016
  • In the present work, a number of advanced three-dimensional (3D) parametric finite element numerical analyses have been conducted to study the behaviour of single piles and pile groups in consolidating ground from coupled consolidation analyses. Single piles, $4{\times}4$ and $6{\times}6$ piles inside groups with a spacing of 2.5D were considered, where D is the pile diameter. It has been found that dragload and downdrag on the piles developed rather quickly at the early stage of consolidation. However, when the degree of consolidation was more than 50~75%, only little increases of dragload and downdrag were induced on the pile. Negative Skin Friction (NSF) on the pile in the fill layer was mobilised quickly and remained constant throughout further consolidation. The development of NSF is influenced both by the relative shear displacements at the pile-soil interface and the vertical effective soil stresses during consolidation. The former governed the early stage of consolidation and the latter affected the later stage of consolidation. The vertical effective soil stresses adjacent to the piles were reduced due to the shear stress transfer at the pile-soil interface, in particular for piles inside the pile groups. The range of NSF influence zone concerning the reductions of the effective vertical soil stresses was about 20D measured from the piles in the horizontal direction. On the contrary, the effective horizontal soil stresses acting on the piles were similar to those at the far field.