• Title/Summary/Keyword: ground adherence

Search Result 9, Processing Time 0.023 seconds

Field Application of a Precast Concrete-panel Retaining Wall Adhered to In-situ Ground (원지반 부착식 판넬옹벽의 현장 적용성 평가)

  • Min, Kyoung-Nam;Lee, Jae-Won;Lee, Jung-Gwan;Kang, In-Kyu;Ahn, Tae-Bong
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.51-61
    • /
    • 2016
  • New building methods are needed to aid increased inner-city redevelopment and industrial construction. A particular area of improvement is the efficient use of cut slopes, with the minimization of associated problems. A retaining wall of precast panels can resist the horizontal earth pressure by increasing the shear strength of the ground and reinforcing it through contact with the panels. Precast panels allow quick construction and avoid the problem of concrete deterioration. Other problems to be solved include the digging of borrow pits, the disposal of material cut from the slope, and degradation of the landscape caused by the exposed concrete retaining wall.This study suggest the methods of improvement of an existing precast panel wall system by changing the appearance of the panels to that of natural rock and improving the process of adhering the panel to a vertical slope. The panels were tested in the laboratory and in the field. The laboratory test verified their specific strength and behavior, and the field test assessed the panels' ground adherence at a vertical cutting. Reinforcement of the cutting slope was also measured and compared with the results of 3D numerical analysis. The results of laboratory test, identified that the shear bar increase the punching resistance of panel. And as a results of test construction, identified the construct ability and field applicability of the panel wall system adhered to in-situ ground. In addition to that, extended measurement and numerical analysis, identified the long-term stability of panel wall system adhered to in-situ ground.

Comparative Study on the Growth Condition of Landscape Woody Plants according to the Ground Structure - Focusing on Manseok Beach Town Complex 2, Incheon - (지반구조에 따른 수목 생육상태 비교 연구 - 인천광역시 만석비치타운 단지를 대상으로 -)

  • Cho, Sung-Ho;Han, Bong-Ho;Park, Seok-Cheol
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.3
    • /
    • pp.63-82
    • /
    • 2022
  • The purpose of this study is to compare growth condition of landscape woody plants growing on the different ground structures in apartment complex. I chose Manseok Beach Town Complex 2, in Manseok-dong, Seo-gu, Incheon which has both natural and artificial ground as a subject site. Analysis of three phases of soil showed that artificial ground had average liquid phase of 30.89%, artificial ground mounding 33.88% and natural ground 24.40%. It means that artificial ground has higher water content than natural ground despite having same earthiness. It is believed that artificial ground is not as well drained as natural ground even though it is connected to the natural ground and has a deep soil depth because of mounding. Comparative study between woody plants on natural ground and those on artificial ground demonstrated that trees on natural ground grew 40.4% compared to those on artificial ground(0.875mm more) in terms of diameter growth. Average diameter growth of trees on natural ground was 3.040mm against 2.165mm for those on artificial ground. All 19 tree species which were measured for root diameter growth showed similar or higher growth on natural ground than on artificial ground. When it comes to growth of height, arborvitae showed highest growth on natural ground, followed by Thuja occidentalis, Pinus strobus, Magnolia denudata, Diospyros kaki and Aesculus turbinata. I measured branch growth and rate of leaf adherence of Pinus strobus. Average annual rate of branch growth of woody plants on natural ground was twice as high as those on artificial ground. I could conclude that ground structure influences branch growth of Pinus strobus. Statistics analysis of tree damage demonstrated significant result, meaning that there is a difference in the average damage rate depending on structure of ground. In order to validate growth difference by planting ground, I conducted T-Test of growth of diameter, root diameter, branch and height on woody plants growing on natural and artificial ground. As a result, it is believed that there is a difference in the growth of trees depending on the ground structure. Putting all these results together demonstrates that woody plants on natural ground generally grow better than those on artificial ground, which means ground structure does have an influence on the environment of growth of trees.

The determination of effect of TiO2 on dynamic behavior of scaled concrete structure by OMA

  • Tuhta, Sertac
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.641-648
    • /
    • 2021
  • In this article, the dynamic parameters (frequencies, mode shapes, damping ratios) of the scaled concrete structure and the dynamic parameters (frequencies, mode shapes, damping ratios) of the entire outer surface of titanium dioxide, 80 micron in thickness are compared using operational modal analysis method. Ambient excitation was provided from micro tremor ambient vibration data on ground level. Enhanced Frequency Domain Decomposition (EFDD) was used for the output only modal identification. From this study, a good correlation between mode shapes was found. Titanium dioxide applied to the entire outer surface of the scaled concrete structure has an average of 11.78% difference in frequency values and 10.15% in damping ratios, proving that nanomaterials can be used to increase rigidity in structures, in other words, for reinforcement. Another important result determined in the study was the observation of the adherence of titanium dioxide and similar nanomaterials mentioned in the introduction to concrete structure surfaces was at the highest level.

The determination of effect of TiO2 on dynamic behavior of scaled WPC warehouse by OMA

  • Tuhta, Sertac
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.65-72
    • /
    • 2022
  • The dynamic properties (frequencies, mode shapes, damping ratios) of the scaled WPC warehouse are compared using the operational modal analysis approach to the dynamic parameters (frequencies, mode shapes, damping ratios) of the full outer surface of titanium dioxide, 70 micron in thickness. Micro tremor ambient vibration data on ground level was used to provide ambient excitation. For the output-only modal identification, Enhanced Frequency Domain Decomposition (EFDD) was used. This study discovered a strong correlation between mode shapes. Titanium dioxide applied to the entire outer surface of the scaled WPC warehouse results in an average 14.05 percent difference in frequency values and 7.61 percent difference in damping ratios, demonstrating that nanomaterials can be used to increase rigidity in structures, or for reinforcement. Another significant finding in the study was the highest level of adherence of titanium dioxide and similar nanomaterials mentioned in the introduction to WPC structure surfaces.

In vitro evaluation of a removable partial denture framework using multi-directionally forged titanium

  • Suzuki, Ginga;Shimizu, Satoshi;Torii, Mana;Tokue, Ai;Ying, Guo;Yoshinari, Masao;Hoshi, Noriyuki;Kimoto, Katsuhiko;Miura, Hiromi;Hayakawa, Tohru;Ohkubo, Chikahiro
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.369-375
    • /
    • 2020
  • PURPOSE. This study evaluated the availability of multi-directionally forged (MDF) titanium (Ti) as a component of removable partial dentures (RPDs). MDF-Ti remarkably improved the mechanical properties of RPDs due to its ultrafine-grained structure. MATERIALS AND METHODS. The wear resistance, plaque adhesion, and machinability of MDF-Ti were tested. As controls, commercially pure (CP) titanium was used for wear, plaque adhesion, and machinability tests. For wear resistance, the volume losses of the titanium teeth before and after wear tests were evaluated. Plaque adhesion was evaluated by the assay of Streptococcus mutans. In the machinability test, samples were cut and ground by a steel fissure bur and carborundum (SiC) point. An unpaired t-test was employed for the analysis of the significant differences between MDF-Ti and the control in the results for each test. RESULTS. Wear resistance and plaque adherence of MDF-Ti similar to those of CP-Ti (P>.05) were indicated. MDF-Ti exhibited significantly larger volume loss than CP-Ti in all conditions except 100/30,000 g/rpm in machinability tests (P<.05). CONCLUSION. Although the wear resistance and plaque adherence of MDF-Ti were comparable to those of controls, MDF-Ti showed better machinability than did CP-Ti. MDF-Ti could be used as a framework material for RPDs.

Effects of the Ground Exercise for Arthritis Program(GEAP) on Pain, Fatigue, Self-esteem, Perceived Health Status and Self-efficacy in Patients with Chronic Arthritis (만성관절염 환자의 통증, 피로, 자아존중감, 건강상태지각과 자기효능감에 대한 관절염 체조의 효과)

  • Sohng Kyeong-Yae;Kang Sung-Sil;Kim Kyung-Hee
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.8 no.2
    • /
    • pp.210-219
    • /
    • 2001
  • Purpose: To examine the effects of the GEAP on pain, fatigue, self-esteem, perceived health status and self-efficacy in patients with chronic arthritis. Methods: One group Pre- & post-test design was used. Outcome domains included pain, number of painful joints, fatigue, self-esteem, perceived health status and self-efficacy. Thirty-four patients were recruited over four times from a rheumatic clinic affiliated to a university medical center in Seoul, Korea The GEAP is an exercise program modified by the investigators from PACE program which developed by Arthritis Foundation. The program duration is about 60 minutes, three times a week for 6 weeks. Participants were predominantly women (68%) ; on average 57.3 years old; and diagnossed with RA (58.8), osteoarthritis (29.4) or other (11.8). Results: After completing the GEAP, subjects showed significant improvement in pain (p=.02), number of painful joints (P= .04), fatigue (p= .0001), and perceived health status (P=.006). There were no improvements in self-esteem and self-efficacy score for adults with chronic rheumatic diseases. Conclusion: This study showed that the GEAP is an effective exercise intervention for improving outcomes for patients with chronic arthritis. More sample and research are needed to 1) accurately evaluate on self-esteem and self-efficacy; 2) understand and improve adherence. And also a longer follow up period is recommended to evaluate long-term effects of the PACE program.

  • PDF

Investigating Structural Stability and Constructability of Buildings Relative to the Lap Splice Position of Reinforcing Bars

  • Widjaja, Daniel Darma;Rachmawati, Titi Sari Nurul;Kwon, Keehoon;Kim, Sunkuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.315-326
    • /
    • 2023
  • The design principles and implementation of rebar lap splice in architectural structures are governed by building regulations. Nevertheless, the minimization of rebar-cutting waste (RCW) is often impeded by the mandatory requirements pertaining to the rebar lapping zone as prescribed in design codes. In real-world construction scenarios, compliance with these rules often falls short due to hurdles concerning productivity, quality, safety, time, and cost. This discrepancy between code stipulations and on-the-ground construction practices necessitates an academic exploration. The goal of this research was to delve into the effect of rebar lap splice placement on the robustness and constructability of building edifices. The study initially took on a review of the computation of rebar lapping length and the rules revolving around the lapping zone. Following this, a structural robustness and constructability examination was undertaken, focusing on adherence to the lap splice zone. The interpretations and deductions of the research led to the following insights: (1) the efficacy of rebar lap splice is not solely contingent on the moment, and (2) the implementation of rebar lap splice beyond the specified zone can match the structural integrity and robustness of those confined within the designated area. As a result, the constraints on the rebar lapping zone ought to be revisited and possibly relaxed. The conclusions drawn from this research are anticipated to reconcile the disconnect between building codes and practical construction conditions, furnishing invaluable academic substantiation to further the endeavor of achieving near-zero RCW.

Evaluation of Reliability of Strain Gauge Measurements for Geosynthetics (토목섬유 보강재에 적용한 스트레인게이지 실측값의 신뢰성 평가)

  • Cho, Sam-Deok;Lee, Kwang-Wu;Li, Zhuang;Kim, Uk-Gie
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.87-96
    • /
    • 2015
  • Geosynthetics are widely used in different ways such as reinforcement of structures in road, railway, harbor and dam engineering, drainage, separation and erosion prevention. They are especially applied to reinforced retaining wall and slope or ground reinforcement. Recently, geosynthetics reinforced pile supported (GRPS) embankment was developed to improve stability and construability of embankments in railway engineering. Extension strains are usually measured by strain gauges adhered to geosynthetics to evaluate the stability of geosynthetics. However, the measurements are influenced by manufacturing method and stiffness of geosynthetics and also adherence of strain gauge. In this study, wide-width tensile strength tests were performed on three types of geosynthetics including geogrid, woven geotextile and non-woven geotextile. During the test, strains of geosynthetics were measured by both video extensometer and strain gauges adhered to the geosynthetics and the measured results were compared. Results show that the measured results by strain gauges have high reliability in case of large stiffness geosythetics like geogrid and woven geotextile, whereas they have very low reliability for small stiffness geosythetics like non-woven geotextile.

NES Model Development: Expert System for Nitrogen Fertilizer Applications to Cornfields (NES 모델 개발 : 질소비료 적정 시용에 대한 전문가체계)

  • Kim, Won-Il;Jung, Goo-Bok;Fermanian, T.W.;Huck, M.G.;Park, Ro-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.55-63
    • /
    • 2001
  • N fertilizer recommendations to optimize with consideration to maximum crop yields, maximum profits, and minimum N losses to ground or runoff water, an advisory system. Nitrogen Expert System (NES), was developed. The system was to estimate the optimal rate of N fertilizer application cornfields in Illinois. NES was constructed using Smart Elements, a knowledge-based system that manages the expertise of human experts. NES was reinforced by addition of the effect of a productivity index (PI), soil organic matter content (SOM), and pre-sidedressing of nitrate concentration (PSNT) to the optimal N fertilizer recommendation. NES contains 49 rules, 1 class, 14 objects, and 2 properties. NES was successfully operated, showing N recommendations with inputs of three soil properties including PI, SOM, and PSNT. NES can reduce N loss to the environment, but adherence to the recommendations may also reduce farmers income. Therefore, NES will be more effective by evaluating both environmental damage assessment and other economic agricultural management parameters and other soil physico-chemical parameters.

  • PDF