• Title/Summary/Keyword: grinding temperature

Search Result 208, Processing Time 0.024 seconds

Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules (페룰 가공용 초정밀 무심 연삭기의 열 특성 해석)

  • Kim, Seo-Kil;Cho, Jae-Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.193-200
    • /
    • 2006
  • To perform the finish grinding process of ferrules which are widely used as fiber optic connectors, a high-precision centerless grinding machine is necessary. The high-precision centerless grinding machine is consisted of the hydrostatic GW and RW spindle systems, hydrostatic RW feeding mechanism, RW swivel mechanism, on-machine GW and RW dressers, and concrete-filled steel bed. In this study, the thermal characteristics of the high-precision centerless grinding machine such as the temperature distribution, temperature rise and thermal deformation, are estimated based on the virtual prototype of the grinding machine and the heat generation rates of heat sources related to the machine operation conditions. The reliability of the predicted results is demonstrated by the temperature characteristics measured from the physical prototype. Especially, the predicted and measured results show the fact that the high-precision centerless grinding machine has very stable thermal characteristics.

Development of the New Type Nozzle and the Thermal Deformation at Workpiece in Grinding (연삭 가공시 공작물의 열변형과 새로운 노즐의 개발)

  • 김남경;안국찬
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.10-19
    • /
    • 1996
  • Grinding temperature and thermal deformation(dimensional error) are studied theoretically and experimentally. The propose of this research is clarified loading phenomena and residual stress In order to guide nozzle's efficiency. The main results to be obtained are as follows ; 1) When grinding condition Is high efficient grinding, FEM program is developed about grinding heat and dimensional error. 2) Thermal deformation depend on temperature distribution is in good agreement with experimental results in case of little grinding energy flux but is comparatively in good agreement with in case of large (3.5$\times$10$^{6}$ J/m). 3) In terms of high efficient grinding at field(table speed 4m/min), grinding fluid (dilution 5/100) obtained a good workpiece quality and decreased a grinding temperature. 4) A surface roughness, dimensional error, residual stress and loading phenomena with guide nozzle are decreased and these results obtained a good workpiece quality.

  • PDF

Characteristics of creep grinding in slotted wheel (단속에 따른 Greep Feed 연삭가공 특성)

  • 이상철;박정우;송지복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.905-909
    • /
    • 1997
  • A geometric error of machine parts is one of the most important factors that affect the accuracy of positioning, generating and measuring for precision machinery. It is known that the thermal deformation of a workpiece during surface grinding is the most important in the geometric error of ground surface. This paper experimentally describes the grinding characteristics of creep-feed grinding. The wheels have 6 slotted pieces in order to compare the grinding temperature with the geometric.

  • PDF

A Study on the Characteristics of Grinding due to the Different Shape of Wheel (숫돌 형상 변화에 따른 연삭가공 특성에 관한 연구)

  • 강신엽;왕덕현;김원일;이윤경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.56-60
    • /
    • 1996
  • An experimental study on the grinding temperature and Acoustic Emission(AE) signals due to the different shapes of wheel was conducted. The grinding characteristics by slotted shapes of wheel changed by width and helical angle, were compared with those by general one. Lower grinding temperature was obtained for 30$^{\circ}$ helical angle with 10mm width, Root Mean Square(RMS) values of AE signals were higher for slotted wheel rather than general one.

  • PDF

A Basic Study on the Monitoring of Grinding Burn by Grinding Power Signatures (연삭동력에 의한 Grinding Burn 검지를 위한 기초적 연구)

  • 이재경
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.18-26
    • /
    • 1997
  • Grinding burn formed on the ground surface is related to the maximum temperature of workpiece surface and wheel tempertaure in the grinding process. The thermal characteristics of workpiece and grinding conditions on the surface tempertaure of the oxidation growing layer after get out of contact with the grinding wheel. The assumption used in grinding power signatures leads to the local temperature distribution between grinding wheel and workpiece, i.e., a single curve determines temperatures anywhere within the grinding wheel at anytime. This information is useful in the study of the grinding burn penetration into the wheel and thus provides an presentation of grinding trouble monitoring for the burning. On the basis of grinding power signatures in the wheel, thermally optimum grinding conditions are defined and controlled. To cope with grinding burn, the use of grinding power signatures is an effective monitoring systems when occurring the grinding process. In this paper, the identified parameters suggested in this study which are derived from the grinding power signatures are presented, and prediction model by grinding power utilized a linear regression algorithm is applied.

  • PDF

A Study on the Surface Grinding using the Machining Center (II) (머시닝센터를 이용한 평면 연삭가공에 관한 연구 (II))

  • Lee, S. M.;Choi, H.;lee, J. C.;Cheong, S. H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.880-883
    • /
    • 2000
  • Temperature generated in the workpiece during grinding process can cause thermal damages. Therefore it is important to understand surface temperature generated during grinding process. In this paper, a theoretical and experimental investigation were performed for the grinding temperature. Grinding experiments were performed in machining center using vitrified bonded CBN cup-type wheel. The surface temperature was measured using thermocouple and calculated through a model of the partition of energy between wheel and workpiece. The residual stress and hardness of ground surface were measured. The experimental results indicate that the surface temperature was in good agreement with theoretical ones. Residual stress and hardness of ground surface were more affected by the change of table speed than the depth of cut.

  • PDF

A Sutdy on Improvement of Geomeric Accuracy by using Fuzzy Algorithm in Surface Grinding (퍼지 알고리즘을 이용한 평면연삭의 형상정도 향상에 관한 연구)

  • 천우진;김남경;하만경;송지복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.149-154
    • /
    • 1993
  • In heavy grinding that is on of the high efficient grinding method, meaningful deformation is generated by high temperature. So, after machining, geomeric error generated od the workpiece. The most important factor on the geometric error is temperature difference between upper layer and lower layer (T $_{d}$) . Relations between Td and grinding condition and maximum geometric error and grinding condition are obtained by experiment. This relations are used in fuzzy algorithm for improvement geometric accuracy. The main results are follows : (1) The linear relation between maximum geometric error and grinding condition is ovtained by experiment. (2) The linear relation between maximum temperature difference between upper layer and lower layer and grinding condition is ovtained by experiment. (3) Control peth of wheel for improvement geometric accuracy is obtained by using the fuzzy algorithm.m.

  • PDF

Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules

  • Kim, Seok-Il;Cho, Jae-Wan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.32-37
    • /
    • 2007
  • The outer diameter finishing grinding process required for ferrules, which are widely used as fiber optic connectors, is carried out by high-precision centerless grinding machines. In this study, the thermal characteristics of such a machine, for example, the temperature distribution, temperature rise, and thermal deformation, were estimated based on a virtual prototype and the heat generation rates of heat sources related to normal operating conditions. The prototype consisted of a concrete-filled bed. hydrostatic grinding wheel (GW) and regulating wheel (RW) spindle systems, a hydrostatic RW feed mechanism, a RW swivel mechanism, and on-machine GW and RW dressers. The reliability of the predicted results was demonstrated using temperature characteristics measured from a physical prototype. The predicted and measured results indicated that this particular high-precision centerless grinding machine had very stable thermal characteristics.

A Study on the Prediction of Thermal Deformation Using Temperature Analysis in Surface Grinding Process (연삭가공시 온도해석을 통한 열변형 예측)

  • 김강석;곽재섭;송지복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.19-23
    • /
    • 1995
  • The thermal deformation of a workpiece during grinding is one of the most important factors that affect a flatness of a grinding surface. The heat generated in one-pass surface grinding causes the convex deformation of a workpiece. Therefore, the ground durfae represents a concave profile. In the analysis a simple model of the temperature distribution, based on the results of a finite element method, is applied. Theanalyzed results are compared with experimental results in surface grinding. The main results obtained are as follows: (1) The temperature distribution of a workpiece by FEM has a good agreement with the experimental results. (2) The bending moment by generated heat causes a convex deformation of the workpiece and it leads to a concave profile of the grinding surface.

  • PDF

Force Modeling and Machining Characteristics of the Intermittent Grinding Wheels

  • Kwak, Jae-Seob;Ha, Man-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.351-356
    • /
    • 2001
  • In the surface grinding operations, the grinding fluid cannot be supplied sufficiently in the cutting zone. Temperature generated in the cutting zone increases rapidly and causes thermal damage such as burning on the surface of a workpiece. To reduce thermal damage, the intermittent grinding wheels, which have an excellent cooling effect, have been applied. This paper describes machining characteristics by using intermittent grinding wheels. The grinding force of the intermittent wheels has been simulated by the SIMULAB, which is a program for simulating dynamic systems. Using the intermittent grinding wheels, the characteristics of grinding force, temperature, surface roughness, and geometric error have been evaluated experimently.

  • PDF