• Title/Summary/Keyword: grinding

Search Result 1,947, Processing Time 0.026 seconds

Study on the Casting Method and Manufacturing Process of Bronze Bells Excavated from the Hoeamsa Temple Site (회암사지 금탁(琴鐸)의 주조방법과 가공기술 연구)

  • Lee, Jae Sung;Baek, Ji Hye;Jeon, Ik Hwan;Park, Jang Sik
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.3
    • /
    • pp.102-121
    • /
    • 2010
  • Three bronze bells excavated from the Hoeamsa temple site were investigated for their microstructures and chemical compositions in an effort to understand the technology applied in fabrication, which may represent the related industry established in the early Joseon period. The result shows that the bells were cast from alloys of approximately 85% copper-8% tin-7% lead. The chemical analysis for ten trace elements shows that they were all kept below 0.3 weight %, suggesting that the alloys were made of relatively well-refined copper, tin and lead. The presence of sulfur and iron indicates that chalcopyrite or chalcocite may have been used in the smelting of copper. Evidence has been found that the bells were cast by pouring the liquid metal from the top of the sand molds that were set up in an upright position. No additional treatments, thermal or mechanical, other than a little grinding were applied upon the completion of casting. After the shaping process, a balancing plate was attached to the top of the bell using a steel connection ring. The connection assembly was then fixed to the main body by using molten bronze as a solder. The surface inscription was found carved using different techniques. The differences in the order of strokes and the calligraphic style indicate that the carving was carried out by more than one master. In the absence of documentary evidence on past bronze technology, the present bronze bells with known chronology, provenance and the main agent of production, prove to be a rare and valuable archaeological material for the understanding of the related technology in use in the early Joseon period.

Impact of Tofu Paste and Non-starch Polysaccharides on Oil Uptake Reduction in Cake Doughnuts (케이크 도넛의 흡유저감에 대한 두부 페이스트와 비전분성 탄수화물 고분자의 영향)

  • Jung, Gil-Young;Lee, Hyeon-Jeong;Ko, Eun-Sol;Kim, Hyun-Seok
    • Food Engineering Progress
    • /
    • v.21 no.1
    • /
    • pp.72-78
    • /
    • 2017
  • The objective of this study was to investigate the effects of combinations of tofu paste and non-starch polysaccharides (NSP) on the oil uptake reduction (OTR) of deep-fat fried cake doughnuts. OTR agents were tofu paste (from grinding tofu with deionized water, followed by passage through a 60 mesh sieve), and five neutral and nine anionic NSPs. A control doughnut (without tofu paste or NSP), tofu doughnut (with tofu paste) and NSP-tofu doughnut (with tofu paste and NSP) were prepared. The moisture and total lipid (TL) content, cross-section image, color characteristic, and specific volume were measured. The tofu and NSP-tofu doughnuts exhibited higher moisture and lower TL content than the control. OTR was 10.8% for the tofu doughnut, and between 13.2% and 41.2% for the NSP-tofu doughnut. The highest OTR (41.2%) was found in the NSP-tofu doughnut with a combination of tofu paste and sodium alginate (NaA). The specific volume of the NSP-tofu doughnuts with combinations of tofu paste with NaA (2.5 mL/g), locust bean gum (2.5 mL/g), and ${\kappa}$-carrageenan (2.4 mL/g) was very close to that of the control (2.6 mL/g). Considering the OTR and specific volume of doughnuts, the combination of tofu paste and NaA would be most effective in reducing the oil uptake of doughnuts during deep-fat frying.

Comparison of Total Phenolics, Total Flavonoids Contents, and Antioxidant Capacities of an Apple Cultivar (Malus domestica cv. Fuji) Peel Powder Prepared by Different Powdering Methods (분말가공법에 따른 국내산 사과껍질분말의 총페놀, 총플라보노이드 및 항산화능 비교)

  • Youn, So Jung;Rhee, Jin-Kyu;Lee, Hyungjae
    • Food Engineering Progress
    • /
    • v.21 no.4
    • /
    • pp.326-331
    • /
    • 2017
  • A cultivar (Malus domestica cv. Fuji) of apple was selected to make apple peel (AP) powder by three different powdering methods. Frozen AP was thawed and subsequently was dried or ground without drying. After AP was dried by hot-air drying at $60^{\circ}C$ or freeze-drying, the dried AP was ground using a conventional blender. Separately, the thawed AP was powered by using a cryogenic micro grinding technology (CMGT). The ground AP and three types of AP powder were extracted using deionized water, 20, 40, 60, 80, or 100% methanol, followed by vacuum evaporation. The total phenolics contents (TPC), total flavonoids contents (TFC), DPPH, and ABTS radical scavenging capacities of each extract were compared to determine an efficient powdering method. Lyophilized AP powder extract using 60% methanol showed the highest TPC and DPPH radical scavenging capacity. In contrast, 60% methanol extract of the powder by CMGT, resulting in the smallest particle, exhibited the highest TFC and ABTS radical scavenging capacity. This study suggests that the extraction yield of bioactive compounds from AP may be varied according to different powdering methods and that a new powdering process such as CMGT may be applicable to develop functional foods efficiently.

Evaluation of 12nm Ti Layer for Low Temperature Cu-Cu Bonding (저온 Cu-Cu본딩을 위한 12nm 티타늄 박막 특성 분석)

  • Park, Seungmin;Kim, Yoonho;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.9-15
    • /
    • 2021
  • Miniaturization of semiconductor devices has recently faced a physical limitation. To overcome this, 3D packaging in which semiconductor devices are vertically stacked has been actively developed. 3D packaging requires three unit processes of TSV, wafer grinding, and bonding, and among these, copper bonding is becoming very important for high performance and fine-pitch in 3D packaging. In this study, the effects of Ti nanolayer on the antioxidation of copper surface and low-temperature Cu bonding was investigated. The diffusion rate of Ti into Cu is faster than Cu into Ti in the temperature ranging from room temperature to 200℃, which shows that the titanium nanolayer can be effective for low-temperature copper bonding. The 12nm-thick titanium layer was uniformly deposited on the copper surface, and the surface roughness (Rq) was lowered from 4.1 nm to 3.2 nm. Cu bonding using Ti nanolayer was carried out at 200℃ for 1 hour, and then annealing at the same temperature and time. The average shear strength measured after bonding was 13.2 MPa.

A Study on the Suitability Analysis of Welding Robot System for Replacement of Manual Welding in Ship Manufacturing Process (선박 제조 공정 분야에서 수용접 대체를 위한 용접 로봇 시스템 도입의 적합성 분석 연구)

  • Kwon, Yong-Seop;Park, Chang-Hyung;Park, Sang-Hyun;Lee, Jeong-Jae;Lee, Jae-Youl
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.799-810
    • /
    • 2022
  • Welding work is a production work method widely used throughout the industry, and various types of welding technologies exist. In addition, many methods are being studied to automate these welding operations using robots, but in the ship manufacturing field, welding such as painting, cutting, and grinding is also the most common operation, but the manual operation ratio is higher than in other industries. Such a high manual labor ratio in the field of ship manufacturing not only causes quality problems and production delays according to the skill of workers, but also causes problems in the supply and demand of manpower. Therefore, this paper analyzed the reason why the automation rate is low in welding work at ship manufacturing sites compared to other industries, and analyzed the production process and field environment for small and medium-sized ship manufacturing companies that repeatedly manufactured with a small quantity production method. Based on the analysis results, it is intended to propose a robot system that can easily move between workplaces and secure uniform welding quality and productivity by collaborating simple welding tasks with humans. Finally, the simulation environment is constructed and analyzed to secure the suitability of robot system application to current production site environment, work process, and productivity, rather than to develop and apply the proposed robot system. Through such pre-simulation and robot system suitability analysis, it is expected to reduce trial and error that may occur in actual field installation and operation, and to improve the possibility of robot application and positive perception of robot system at ship manufacturing sites.

Development of Mineral Admixture for Concrete Using Spent Coffee Grounds (커피찌꺼기를 활용한 콘크리트 혼화재의 개발)

  • Kim, Sung-Bae;Lee, Jae-Won;Choi, Yoon-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.185-194
    • /
    • 2022
  • Coffee is one of the most consumed beverages in the world and is the second largest traded commodity after petroleum. Due to the great demand of this product, large amounts of waste is generated in the coffee industry, which are toxic and represent serious environmental problems. This study aims to study the possibility of recycling spent coffee grounds (SCG) as a mineral admixture by replacing the cement in the manufacturing of concrete. To recycle the coffee g rounds, the SCG was dried to remove moisture and fired in a kiln at 850 ℃ for 8 hours. Carbonized coffee grounds are produced as coffee grounds ash (CGA) through ball mill grinding. The chemical composition of the prepared coffee grounds ash was investigated using X-ray fluorescence (XFR). According to the chemical composition analysis, the major elements of coffee grounds ash are K2O(51.74 %), CaO(15.92 %), P2O5(14.39 %), MgO(7.74 %) and SO3(6.89 %), with small amounts of F2O3(0.66 %), SiO2(0.59 %) and Al2O3(0.31 %) content. To evaluate quality and mechanical properties, substitutions of 5, 10, and 15 wt.% of coffee grounds ash (CGA) were tested. From the quality test results, the 28-day activity index of CGA5 reached 80 %, and the flow value ratio reached 96 %, which is comparable to the minimum requirement for second-grade FA. From the test results of the mortar, the optimal results have been found in specimens with 5 wt-% coffee grounds ash, showing good mechanical and physical properties.

Environmental Impact Evaluation of Mechanical Seal Manufacturing Process by Utilizing Recycled Silicon from End-of-Life PV Module (태양광 폐모듈 실리콘을 재활용한 메커니컬 실 제조공정의 환경성평가)

  • Shin, Byung-Chul;Shin, Ji-Won;Kwon, Woo-Teck;Choi, Joon-Chul;Sun, Ju-Hyeong;Jang, Geun-Yong
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.203-209
    • /
    • 2022
  • An environmental evaluation was conducted by employing LCA methodology for a mechanical seal manufacturing process that uses recycled silicon recovered from end-of-cycle PV modules. The recycled silicon was purified and reacted with carbon to synthesize β-SiC particles. Then the particles underwent compression molding, calcination and heat treatment to produce a product. Field data were collected and the potential environmental impacts of each stage were calculated using the LCI DB of the Ministry of Environment. The assessment was based on 6 categories, which were abiotic resource depletion, acidification, eutrophication, global warming, ozone depletion and photochemical oxidant creation. The environmental impacts by category were 45 kg CO2 for global warming and 2.23 kg C2H4 for photochemical oxide creation, and the overall environmental impact by photochemical oxide creation, resource depletion and global warming had a high contribution of 98.7% based on weighted analysis. The wet process of fine grinding and mixing the raw silicon and carbon, and SiC granulation were major factors that caused the environmental impacts. These impacts need to be reduced by converting to a dry process and using a system to recover and reuse the solvent emitted to the atmosphere. It was analyzed that the environmental impacts of resource depletion and global warming decreased by 53.9% and 60.7%, respectively, by recycling silicon from end-of-cycle PV modules. Weighted analysis showed that the overall environmental impact decreased by 27%, and the LCA analysis confirmed that recycling waste modules could be a major means of resource saving and realizing carbon neutrality.

A Study on Moisture Adsorption Capacity by Charcoals (숯의 수분 흡착성능 연구)

  • Kim, Dae Wan;An, Ki Sun;Kwak, Lee Ku;Kim, Hong Gun;Ryu, Seung Kon;Lee, Young Seak
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.377-385
    • /
    • 2022
  • Surface morphology and adsorption characteristics of charcoals prepared from Korean traditional kiln were analyzed, and their moisture adsorption capacities were examined with respect to humidity and temperature change. Moisture adsorption capacities of red-clay powder, activated carbon fiber fabric (ACF fabric) and activated carbon fiber paper(ACF paper) were also examined to compare with those of charcoals. Moisture adsorption capacity of charcoal was low less than 45% humidity due to its hydrophobic property, but it slowly and linearly increased as increasing the humidity. Moisture adsorption capacity of red-clay powder was similar to charcoal at low level humidity, it increased exponentially as increasing the humidity showing Type V adsorption isotherm. Therefore, the weather forecast annal prepared by employee of weather centre in Joseon Dynasty is experimentally approved. ACF fabric and ACF paper show excellent moisture adsorption capacities, which can be used to humidity measuring sensor. Adsorption isotherm of charcoal slice was peculear showing the mixed Type I and Type IV due to low-pressure hysteresis that was occurred from embedment of nitrogen in crevice of charcoal. The specific surface area of charcoal increased by grinding charcoal slice to powder, resulted in increasing the desorption amount of adsorbent at low relative pressure.

Fabrication of fixed prosthesis by employing functionally generated path technique and dual scan technique in a tardive dyskinesia patient: a case report (지연성 운동이상증 환자에서 functionally generated path 술식과 이중스캔법을 이용한 고정성 보철물 제작: 증례 보고)

  • Shilpa;Du-Hyeong Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.3
    • /
    • pp.227-233
    • /
    • 2023
  • Tardive dyskinesia is an involuntary neurological movement disorder caused by long-term use of dopamine receptor-blocking drugs leading to dental implications like uncontrolled gnashing and grinding of teeth which in turn imperil the oral rehabilitation procedures as the excessive load increases the risk of prosthesis fracture. A 40-year male with a medical history of tardive dyskinesia visited the hospital to receive oral rehabilitation for missing maxillary anterior teeth. After the oral examination, tooth preparation was done on teeth 13, 15, and 23. After that silicon impression was made and the gypsum cast was digitalized using a desktop scanner and an interim prosthesis was fabricated by milling a resin block. During the try-in, the occlusal one-third of the interim prosthesis was trimmed, and an auto-polymerizing acrylic resin was applied on the occlusal surfaces and inserted in the patient's mouth. Then, the functionally generated path (FGP) of occluding surfaces of opposing arches was traced on the resin surface. When the resin was hardened, the modified interim prosthesis was removed and digitized using an intraoral scanner. The scan image was used in designing the occlusal morphology of definitive prosthesis by modifying the design of the interim prosthesis using the dual scan method. Lastly, a monolithic zirconia prosthesis was fabricated by milling a zirconia block. The definitive prosthesis was delivered reflecting the patient's occlusal scheme. This case report shows that the FGP technique with the dual scan method can help in fabricating fixed prosthesis with harmonious occlusion in a tardive dyskinesia patient.

Quality Characteristics of Rice Wort and Rice Beer by Rice Processing (쌀 가공처리에 따른 쌀 맥즙 및 쌀 맥주의 품질특성)

  • Park, Jiyoung;Lee, Seuk-Ki;Choi, Induck;Choi, Hye-Sun;Kim, Namgeol;Shin, Dong Sun;Jeong, Kwang-Ho;Park, Chang-Hwan;Oh, Sea-Kwan
    • Food Engineering Progress
    • /
    • v.23 no.4
    • /
    • pp.290-296
    • /
    • 2019
  • Rice in Korea is a highly valuable food resource that serves both as staple food and ingredient in various processed edibles. This study was conducted to explore pre-treatment methods for rice that result in good saccharification upon production of rice beer. When rice was subjected to fine grinding, steeping, roasting, gelatinizing, or puffing prior to saccharification with malt, wort containing puffed rice had the highest soluble solid content (°Bx). Upon production of wort without the addition of any enzymes for liquefaction or saccharification, the addition of 30% rice resulted in the highest soluble solid content (°Bx). Production of beer containing 10, 20, or 30% of either roasted or puffed rice showed that wort containing 30% puffed rice had the highest soluble solid content (15.4 °Bx) with good saccharification. The resulting beer likewise exhibited higher alcohol content (5.0-5.4%) than the beer that had roasted rice added, without the turbidity and with less bitterness. Therefore, rice puffing was considered a beneficial processing method to enhance rice saccharification and to facilitate both the production of fine quality beers and rice beer containing puffed rice.