• Title/Summary/Keyword: grid-mapping

Search Result 171, Processing Time 0.029 seconds

Effect of Grid Cell Size on the Accuracy of Dasymetric Population Estimation (격자크기가 밀도구분적 인구추정의 정확성에 미치는 영향)

  • JUN, Byong-Woon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.127-143
    • /
    • 2016
  • This study explored the variability in the accuracy of dasymetric population estimation with different grid cell sizes. Dasymetric population maps for Fulton County, Georgia in the US were generated from 30m to 420m at intervals of 30m using an automated intelligent dasymetric mapping technique, population data, and original and simulated land use and cover data. The accuracies of dasymetric population maps were evaluated using RMSE and adjusted RMSE statistics. Lumped fractal dimension values were calculated for the dasymetric population maps generated from resolutions of 30m to 420m using the triangular prism surface area (TPSA) method. The results show that a grid cell size of 210m or smaller is required to estimate population more accurately in terms of thematic accuracy, but a grid cell size of 30m is required to meet an acceptable spatial accuracy of dasymetric population estimation in the study area. The fractal analysis also indicates that a grid cell size of 120m is the optimal resolution for dasymetric population estimation in the study area.

Aerodynamic Shape Optimization using Discrete Adjoint Formulation based on Overset Mesh System

  • Lee, Byung-Joon;Yim, Jin-Woo;Yi, Jun-Sok;Kim, Chong-Am
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.95-104
    • /
    • 2007
  • A new design approach of complex geometries such as wing/body configuration is arranged by using overset mesh techniques under large scale computing environment. For an in-depth study of the flow physics and highly accurate design, several special overlapped structured blocks such as collar grid, tip-cap grid, and etc. which are commonly used in refined drag prediction are adopted to consider the applicability of the present design tools to practical problems. Various pre- and post-processing techniques for overset flow analysis and sensitivity analysis are devised or implemented to resolve overset mesh techniques into the design optimization problem based on Gradient Based Optimization Method (GBOM). In the pre-processing, the convergence characteristics of the flow solver and sensitivity analysis are improved by overlap optimization method. Moreover, a new post-processing method, Spline-Boundary Intersecting Grid (S-BIG) scheme, is proposed by considering the ratio of cell area for more refined prediction of aerodynamic coefficients and efficient evaluation of their sensitivities under parallel computing environment. With respect to the sensitivity analysis, discrete adjoint formulations for overset boundary conditions are derived by a full hand-differentiation. A smooth geometric modification on the overlapped surface boundaries and evaluation of grid sensitivities can be performed by mapping from planform coordinate to the surface meshes with Hicks-Henne function. Careful design works for the drag minimization problems of a transonic wing and a wing/body configuration are performed by using the newly-developed and -applied overset mesh techniques. The results from design applications demonstrate the capability of the present design approach successfully.

GARS : Resource Mapping Algorithm for Computational Grid Environment (GARS : 그리드 환경을 위한 리소스 매핑 알고리즘)

  • Han, Sang-Ryoul;Kim, Ki-Hyung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11a
    • /
    • pp.123-126
    • /
    • 2003
  • 이질적인 계산자원들로 구성된 환경에서 독립적인 작업들을 스케줄링하기 위한 최적의 방법을 찾는 것은 NP-Complete 문제로 알려져 있다[3]. 현재까지 이 문제를 풀기 위한 다양한 휴리스틱 스케줄링 방법이 연구되어 왔다[l][4][5][6]. 본 논문에서는 그리드 컴퓨팅 환경을 위한 태스크 매핑 알고리즘을 제안한다. 제안한 알고리즘은 태스크의 완료시간을 계산시간과 통신시간으로 분리하여 노드의 성능과 네트워크의 상태를 감안하여 태스크를 할당하는 네트워크 적응적 매핑 알고리즘이다.

  • PDF

Avoidance obstacles using A* algorithm in the Eyebot (A*를 이용한 장애물 회피)

  • 정현룡;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.468-471
    • /
    • 2003
  • The A* algorithm is usually used in game programming, mainly because it is fast in finding a optimal path to goal. In this paper. This algorithm was utilized for path finding, HIMM(Histogramic In-Motion Mapping) method is used in map-building. Map is updated continuously with range data sampled by PSD sensors From the map, A* algorithm finds a optimal path and sends subsequently the most suitable point to the Eyebot. A* algorithm has been tested on the Eyebot in various unknown maps of unknown and proved to work well. It could escape the local minimum, also.

  • PDF

형상보건을 이용한 유한요소 격자생성

  • Lee, Won-Yang;Choi, Young;Cho, Sung-Wook
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.298-302
    • /
    • 1994
  • A three dimensional FE mesh generation scheme based on mapping approach is proposed in this study. A volume in Euclcdian space is represented by composite hyperpatches which are piecewise cubic functions with parameters u,v,w. A key idea in the proposed approach is that sampled grid data points only on the boundary surfaces are needed for the shape representation. Inner points which are necessary of form a hyperpatch are internally generated by Coons patches. This approach is most appropriate for the shapes which are compositions of hexahedron-like shapes and also severely curved.

  • PDF

The PRISM-based Rainfall Mapping at an Enhanced Grid Cell Resolution in Complex Terrain (복잡지형 고해상도 격자망에서의 PRISM 기반 강수추정법)

  • Chung, U-Ran;Yun, Kyung-Dahm;Cho, Kyung-Sook;Yi, Jae-Hyun;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.2
    • /
    • pp.72-78
    • /
    • 2009
  • The demand for rainfall data in gridded digital formats has increased in recent years due to the close linkage between hydrological models and decision support systems using the geographic information system. One of the most widely used tools for digital rainfall mapping is the PRISM (parameter-elevation regressions on independent slopes model) which uses point data (rain gauge stations), a digital elevation model (DEM), and other spatial datasets to generate repeatable estimates of monthly and annual precipitation. In the PRISM, rain gauge stations are assigned with weights that account for other climatically important factors besides elevation, and aspects and the topographic exposure are simulated by dividing the terrain into topographic facets. The size of facet or grid cell resolution is determined by the density of rain gauge stations and a $5{\times}5km$ grid cell is considered as the lowest limit under the situation in Korea. The PRISM algorithms using a 270m DEM for South Korea were implemented in a script language environment (Python) and relevant weights for each 270m grid cell were derived from the monthly data from 432 official rain gauge stations. Weighted monthly precipitation data from at least 5 nearby stations for each grid cell were regressed to the elevation and the selected linear regression equations with the 270m DEM were used to generate a digital precipitation map of South Korea at 270m resolution. Among 1.25 million grid cells, precipitation estimates at 166 cells, where the measurements were made by the Korea Water Corporation rain gauge network, were extracted and the monthly estimation errors were evaluated. An average of 10% reduction in the root mean square error (RMSE) was found for any months with more than 100mm monthly precipitation compared to the RMSE associated with the original 5km PRISM estimates. This modified PRISM may be used for rainfall mapping in rainy season (May to September) at much higher spatial resolution than the original PRISM without losing the data accuracy.

Declustering of High-dimensional Data by Cyclic Sliced Partitioning (주기적 편중 분할에 의한 다차원 데이터 디클러스터링)

  • Kim Hak-Cheol;Kim Tae-Wan;Li Ki-Joune
    • Journal of KIISE:Databases
    • /
    • v.31 no.6
    • /
    • pp.596-608
    • /
    • 2004
  • A lot of work has been done to reduce disk access time in I/O intensive systems, which store and handle massive amount of data, by distributing data across multiple disks and accessing them in parallel. Most of the previous work has focused on an efficient mapping from a grid cell to a disk number on the assumption that data space is regular grid-like partitioned. Although we can achieve good performance for low-dimensional data by grid-like partitioning, its performance becomes degenerate as grows the dimension of data even with a good disk allocation scheme. This comes from the fact that they partition entire data space equally regardless of distribution ratio of data objects. Most of the data in high-dimensional space exist around the surface of space. For that reason, we propose a new declustering algorithm based on the partitioning scheme which partition data space from the surface. With an unbalanced partitioning scheme, several experimental results show that we can remarkably reduce the number of data blocks touched by a query as grows the dimension of data and a query size. In this paper, we propose disk allocation schemes based on the layout of the resultant data blocks after partitioning. To show the performance of the proposed algorithm, we have performed several experiments with different dimensional data and for a wide range of number of disks. Our proposed disk allocation method gives a performance within 10 additive disk accesses compared with strictly optimal allocation scheme. We compared our algorithm with Kronecker sequence based declustering algorithm, which is reported to be the best among the grid partition and mapping function based declustering algorithms. We can improve declustering performance up to 14 times as grows dimension of data.

A Hybrid Dasymetric Mapping for Population Density Surface using Remote Sensing Data (원격탐사자료를 바탕으로 인구밀도 분포 작성을 위한 하이브리드 대시메트릭 지도법)

  • Kim, Hwa-Hwan;Choi, Jin-Mu
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.1
    • /
    • pp.67-80
    • /
    • 2011
  • Choropleth mapping of population distribution is based on the assumption that people are uniformly distributed throughout each enumeration unit. Dasymetric mapping technique improves choropleth mapping by refining spatially aggregated data with residential information. Further, pycnophylactic interpolation can upgrade dasymetric mapping by considering population distribution of neighboring areas, while preserving the volumes of original units. This study proposed a combined solution of dasymetric mapping and pycnophylactic interpolation to improve the accuracy of population density distribution. Specifically, the dasymetric method accounts for the spatial distribution of population within each census unit, while pycnophylactic interpolation considers population distribution of neighboring area. This technique is demonstrated with 1990 census data of the Athens, GA. with land use land cover information derived from remotely-sensed imagery for the areal extent of populated areas. The results are evaluated by comparison between original population counts of smaller census units (census block groups) and population counts of the grid map built from larger units (census tracts) aggregated to the same areal units. The estimated populations indicate a satisfactory level of accuracy. Population distribution acquired by the suggested method can be re-aggregated to any type of geographic boundaries such as electoral boundaries, school districts, and even watershed for a variety of applications.

Bayesian Analysis and Mapping of Elderly Korean Suicide Rates (베이지안 모형을 활용한 국내 노인 자살률 질병지도)

  • Lee, Jayoun;Kim, Dal Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.325-334
    • /
    • 2015
  • Elderly suicide rates tend to be high in Korea. Suicide by the elderly is no longer a personal problem; consequently, further research on risk and regional factors is necessary. Disease mapping in epidemiology estimates spatial patterns for disease risk over a geographical region. In this study, we use a simultaneous conditional autoregressive model for spatial correlations between neighboring areas to estimate standard mortality ratios and mapping. The method is illustrated with cause of death data from 2006 and 2010 to analyze regional patterns of elderly suicide in Korea. By considering spatial correlations, the Bayesian spatial models, mean educational attainment and percentage of the elderly who live alone was the significant regional characteristic for elderly suicide. Gibbs sampling and grid method are used for computation.

Performance Improvement of Declustering Algorithm by Efficient Grid-Partitioning Multi-Dimensional Space (다차원 공간의 효율적인 그리드 분할을 통한 디클러스터링 알고리즘 성능향상 기법)

  • Kim, Hak-Cheol
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.37-48
    • /
    • 2010
  • In this paper, we analyze the shortcomings of the previous declustering methods, which are based on grid-like partitioning and a mapping function from a cell to a disk number, for high-dimensional space and propose a solution. The problems arise from the fact that the number of splitting is small(for the most part, binary-partitioning is sufficient), and the side length of a range query whose selectivity is small is quite large. To solve this problem, we propose a mathematical model to estimate the performance of a grid-like partitioning method. With the proposed estimation model, we can choose a good grid-like partitioning method among the possible schemes and this results in overall improvement in declustering performance. Several experimental results show that we can improve the performance of a previous declustering method up to 2.7 times.