• Title/Summary/Keyword: grid stabilization

Search Result 71, Processing Time 0.039 seconds

Study on the Voltage Stabilization Technology Using Photovoltaic Generation Simulator in Three-Level Bipolar Type DC Microgrid

  • Kim, Taehoon;Kim, Juyong;Cho, Jintae;Jung, Jae-Seung
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1123-1130
    • /
    • 2018
  • Voltage stabilization is an essential component of power quality in low voltage DC (LVDC) microgrid. The microgrid demands the interconnection of a number of small distributed power resources, including variable renewable generators. Therefore, the voltage can be maintained in a stable manner through the control of these distributed generators. In this study, we did research on the new advanced operating method for a photovoltaic (PV) simulator in order to achieve interconnection to a bipolar LVDC microgrid. The validity of this voltage stabilization method, using the distributed generators, is experimentally verified. The test LVDC microgrid is configured by connecting the developed PV simulator and DC load, DC line, and AC/DC rectifier for connecting the main AC grid. The new advanced control method is applied to the developed PV simulator for the bipolar LVDC grid in order to stabilize the gird voltage. Using simulation results, the stabilization of the grid voltage by PV simulator using the proposed control method is confirmed the through the simulation results in various operation scenarios.

Control Strategy for a Grid Stabilization of a Large Scale PV Generation System based on German Grid Code (독일 계통 연계 규정에 기반 된 대용량 태양광 발전 시스템의 계통 안정화를 위한 제어 전략)

  • Bae, Young-Sang;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.41-50
    • /
    • 2014
  • The rising penetration of renewable energy resulted in the development of grid-connected large-scale power plants. Therefore, grid stabilization, which depends on the system-type or grid of each country, plays an important role and has been strengthened by different grid codes. With this background, VDE-AR-N 4105 for photovoltaic (PV) systems connected to the low-voltage grid and the German Association of Energy and Water Industries (BDEW) introduced the medium-voltage grid code for connecting power plants to the grid and they are the most stringent certifications. In this paper, an optimal control strategy scheme for three-phase grid-connected PV system is enhanced with VDE-AR-N 4105 and BDEW grid code, where both active/reactive powers are controlled. Simulation and experimental results of 100kW PV inverter are shown to verify the effectiveness of the proposed implemental control strategy.

Conceptual model architecture design for power grid stabilization service using distributed resources (분산 자원을 활용한 전력망 안정화 서비스 개념적 모델 아키텍처 설계)

  • Jin Oh Kim;Young Min Kim;Joo Yeoun Lee
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.20 no.spc1
    • /
    • pp.97-107
    • /
    • 2024
  • Efforts to respond to climate change are being made in various ways around the world, and in the energy field, continuous research and pilot projects are underway through new and renewable energy, efficient power grid management, and power grid services. Systems are in place to realize these efforts, and the systems created allow for better effectiveness. When implementing a system, systems engineering methodology helps design a more systematic system and can provide verification accuracy and uniformity through intuitive connectivity. In this paper, the original requirements of the power grid stabilization system and the architecture of the system's essential constraints are constructed as a conceptual model and the boundaries and flows between components are defined. By utilizing distributed resources such as EV(Electric Vehicle) and ESS(Energy Storage System) in the power service platform system, we plan to design and build a next-generation power service system that can participate in the power stabilization market and implement a system necessary to respond to climate change in the future.

Mechanism Analysis and Stabilization of Three-Phase Grid-Inverter Systems Considering Frequency Coupling

  • Wang, Guoning;Du, Xiong;Shi, Ying;Tai, Heng-Ming;Ji, Yongliang
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.853-862
    • /
    • 2018
  • Frequency coupling in the phase domain is a recently reported phenomenon for phase locked loop (PLL) based three-phase grid-inverter systems. This paper investigates the mechanism and stabilization method for the frequency coupling to the stability of grid-inverter systems. Self and accompanying admittance models are employed to represent the frequency coupling characteristics of the inverter, and a small signal equivalent circuit of a grid-inverter system is set up to reveal the mechanism of the frequency coupling to the system stability. The analysis reveals that the equivalent inverter admittance is changed due to the frequency coupling of the inverter, and the system stability is affected. In the end, retuning the bandwidth of the phase locked loop is presented to stabilize the three-phase grid-inverter system. Experimental results are given to verify the analysis and the stabilization scheme.

A Review on the Grid-Connected Technology of the Distributed Energy Resources (분산형전원의 계통연계기술 리뷰)

  • Lee, Kyungsoo
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.371-372
    • /
    • 2014
  • This review focuses on grid-connected technology for distributed energy resources(DER). The grid-connected technology is categorized into three classifications: 1) protection function; 2) power quality improvement function; 3) grid stabilization fuction. Grid codes comparison of Japan, USA, EU and Korea is also described in the paper.

  • PDF

A study on the stabilization characteristics of the diffusion flame formed behind a bluff body (Bluff Body 후류에 형성되는 확산화염의 보염특성에 관한 연구)

  • ;;An, Jin-Geun;Song, Kyu-Keun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.12
    • /
    • pp.3344-3351
    • /
    • 1995
  • The stability of diffusion flame formed behind a bluff body with fuel injection slits was experimentally investigated in various fuel injection angles, fuel injection ratios, grids and extension ducts. The flame stability limits, temperature distributions and length of recirculation zones, direct photographs of flames were measured in order to discuss the stabilization mechanism of the diffusion flame. The results from this study are as follows. The fuel injection angle is an important factor in determining the flame stability. Stability limits can be improved by variety of the fuel injection ratio. When the grid and extension duct are set, stability characteristics are varied with the blockage ratios, grid intervals, and grid numbers. The recirculation zone not only serves as a steady ignition source of combustion stream but also governs the stabilization mechanism.

Frequency Stabilization Method for Grid Integration of Large-scale Centralized Wind Farms via VSC-HVDC Technology

  • Peng, Yanjian;Li, Yong;Liu, Fang;Xu, Zhiwei;Cao, Yijia
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.547-557
    • /
    • 2018
  • This work proposes a control method of frequency stabilization for grid integration of large-scale wind farms via the voltage source converter-based high-voltage direct current (VSC-HVDC) technology. First, the topology of grid integration of a large-scale wind farm via the VSC-HVDC link is provided, and simple control strategies for wind turbines, wind farm side VSC (WFVSC), and grid side VSC are presented. Second, a mathematical model between the phase angle of WFVSC and the frequency of the wind farm is established. The control principle of the large-scale wind power integrated system is analyzed in theory in accordance with the mathematical model. Third, frequency and AC voltage controllers of WFVSC are designed based on the mathematical model of the relationships between the phase angle of WFVSC and the frequency of the wind farm, and between the modulation index of WFVSC and the voltage of the wind farm. Corresponding controller structures are established by deriving a transfer function, and an optimization method for selecting the parameters of the frequency controller is presented. Finally, a case study is performed under different operating conditions by using the DIgSILENT/PowerFactory software. Results show that the proposed control method has good performance in the frequency stabilization of the large-scale wind power integrated system via the VSC-HVDC technology.

Deep Video Stabilization via Optical Flow in Unstable Scenes (동영상 안정화를 위한 옵티컬 플로우의 비지도 학습 방법)

  • Bohee Lee;Kwangsu Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.115-127
    • /
    • 2023
  • Video stabilization is one of the camera technologies that the importance is gradually increasing as the personal media market has recently become huge. For deep learning-based video stabilization, existing methods collect pairs of video datas before and after stabilization, but it takes a lot of time and effort to create synchronized datas. Recently, to solve this problem, unsupervised learning method using only unstable video data has been proposed. In this paper, we propose a network structure that learns the stabilized trajectory only with the unstable video image without the pair of unstable and stable video pair using the Convolutional Auto Encoder structure, one of the unsupervised learning methods. Optical flow data is used as network input and output, and optical flow data was mapped into grid units to simplify the network and minimize noise. In addition, to generate a stabilized trajectory with an unsupervised learning method, we define the loss function that smoothing the input optical flow data. And through comparison of the results, we confirmed that the network is learned as intended by the loss function.

Fixed speed wind power generation system modeling and transient state stabilization method using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 고정속 풍력발전시스템 모델링 및 과도상태 안정화기법)

  • Kim, Young-Ju;Park, Dae-Jin;Ali, Mohd Hasan;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1178-1179
    • /
    • 2008
  • This paper describes a modeling of fixed speed wind power generation system which comprise of wind turbine, generator and grid. The wind turbine is based on MOD-2, which is IEEE standard wind turbine, and includes a component using wind turbine characteristic equation. Fixed speed induction generator is directly connected to grid, so the variation of wind speed has effects on the electrical torque and electrical output power. Therefore the power control mode pitch control system is necessary for aerodynamic control of the blades. But the power control mode does not operate at the fault condition. So it is required some methods to control the rotor speed at transient state for stabilization of wind power system. In this paper, simulation model of a fixed speed wind power generation system based on the PSCAD/EMTDC is presented and implemented under the real weather conditions. Also, a new pitch control system is proposed to stabilize the wind power system at the fault condition. The validity of the stabilization method is demonstrated with the results produced through sets of simulation.

  • PDF

An Adaptive Digital Notch Filter for Stabilization of Single-Phase Grid-Connected Inverters With LCL Filter (LCL 필터가 결합된 단상 계통연계형 인버터의 안정화를 위한 적응형 디지털 노치 필터)

  • Heo, Jin-Yong;Kim, Hak-Soo;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.307-314
    • /
    • 2021
  • Even though the LCL filters have superior harmonic attenuation ability to L filters, stability has always been an issue. The system could be unstable because of the resonance phenomenon, especially when digital controller is used. Adding a notch filter to the compensator is one approach to solve the problem. Resonance phenomenon can be inhibited by aligning notch frequency to system resonance frequency. However, resonance frequency variation can be obtained because the actual system has a nonstationary characteristic. Therefore, the system could be unstable, where the system parameters are changed when the conventional notch filter is used. An adaptive digital notch filter that stabilizes the system even system parameters are changed. Simulation and experiment results are provided to verify the validity of the proposed adaptive filter.