• Title/Summary/Keyword: grid size

Search Result 716, Processing Time 0.026 seconds

An Energy-Efficient Multi-Hop Scheme Based on Cooperative MIMO for Wireless Sensor Networks

  • Peng, Yu-Yang;Abn, Seong-Beom;Pan, Jae-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9A
    • /
    • pp.796-800
    • /
    • 2011
  • An energy-efficient multi-hop scheme based on cooperative MIMO (multiple-input multiple-output) technique is proposed for wireless sensor networks, taking into consideration the modulation constellation size, transmission distance, and extra training overhead requirement. The scheme saves energy by selecting the hop length. In order to evaluate the performance of the proposed scheme, a detailed analysis of the energy and delay efficiencies in the proposed scheme compared with the equidistance scheme is presented. Results from numerical experiments indicate that by use of the proposed scheme significant savings in terms of total energy cousumption can be achieved.

A STUDY ON OPTIMAL UPGRADING VOLTAGE OF EHV GRID NETWORK-LYBIAN CASE (초고압 송전선로의 최적 격상전압 선정에 관한 연구-리비아국 사례)

  • Kim, Bong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1041-1043
    • /
    • 1997
  • When a new transmission line is planned to construct, the system voltage and the conductor size of the transmission line should be decided by both economical and technical point of view. This paper presents a methodology to determine the optimal voltage for upgrading the transmission system voltage of existing the extra high voltage grid network by meeting the requirements of the transmission cost minimization as well as technical constraints of thermal limit and stability limit in the transmission line. As a case study, calculated are optimal voltages versus distance and capacity of a practically applicable transmission line with 4 bundles 2 circuits. By this study 400kV was selected as the next higher voltage for the existing 220kV Libyan grid network.

  • PDF

Hybrid Secondary Voltage Control combined with Large-Scale Wind Farms and Synchronous Generators

  • Kim, Jihun;Lee, Hwanik;Lee, Byongjun;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.399-405
    • /
    • 2014
  • For stable integration of large-scale wind farms, integration standards (Grid codes) have been proposed by the system operator. In particular, voltage control of large-scale wind farms is gradually becoming important because of the increasing size of individual wind farms. Among the various voltage control methods, Secondary Voltage Control (SVC) is a method that can control the reactive power reserve of a control area uniformly. This paper proposes hybrid SVC when a large-scale wind farm is integrated into the power grid. Using SVC, the burden of a wind turbine converter for generating reactive power can be reduced. To prove the effectiveness of the proposed strategy, a simulation study is carried out for the Jeju system. The proposed strategy can improve the voltage conditions and reactive power reserve with this hybrid SVC.

Effect of Building Generalization in a Lattice Cell Form on the Spatial Connectivity of Overland Storm Waterways in an Urban Residential Area (격자형 건물 일반화가 도시 주거지 빗물 유출경로의 연속성에 미치는 영향)

  • JEON, Ka-Young;HA, Sung-Ryong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.137-151
    • /
    • 2017
  • The space between urban buildings becomes a waterway during rain events and requires a boundary condition in numerical calculations on grids to separate overland storm flows from building areas. Minimization of the building data distortion as a boundary condition is a necessary step for generating accurate calculation results. A building generalization is used to reduce the distortion of building shapes and areas during a raster conversion. The objective of this study was to provide the appropriate threshold value for building generalization and grid size in a numerical calculation. The impact of building generation on the connectivity of urban storm waterways were analyzed for a general residential area. The building generalization threshold value and the grid size for numerical analysis were selected as the independent variables for analysis, and the number and area of sinks were used as the dependent variables. The values for the building generalization threshold and grid size were taken as the optimal values to maximize the building area and minimize the sink area. With a 3 m generalization threshold, sets of $5{\times}5m$ to $10{\times}10m$ caused 5% less building area and 94.4% more sink area compared to the original values. Two sites representing general residential area types 2 and 3 were used to verify building generalization thresholds for improving the connectivity of storm waterways. It is clear that the recommended values are effective for reducing the distortion in both building and sink areas.

Numerical analysis of the vortex induced vibration of the 2-D cylinder using dynamic deforming mesh (동적격자변형기법을 이용한 2차원 실린더의 와류유발진동에 대한 수치해석)

  • Lee, Namhun;Baek, Jiyoung;Lee, Seungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • In this paper, numerical simulations are performed on the lock-in phenomena of vortex induced vibration(VIV) of a two dimensional cylinder. A deforming grid as well as a rigidly moving grid are used to simulate the movement of the cylinder. The grid deformation is accomplished by the linear spring analogy. Converged solutions, which are obtained by controling the grid size and the non-dimensional time step, are used for comparison and validation of the analysis results. Moreover, the efficiency and the accuracy of the coupling methods for fluid-structure interaction are examined.

EFFECT OF LENGTH-SCALE IN DDES FOR BACKWARD-FACING STEP FLOW (후향계단 DDES 해석의 길이척도 영향 분석)

  • Lee, C.Y.;Sa, J.H.;Park, S.H.;Lee, E.S.;Lee, J.I.;Lee, K.S.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.24-31
    • /
    • 2012
  • Effects of the subgrid length-scale in the Delayed-Detached Eddy Simulation(DDES) are investigated based on the Spalart-Allmaras(S-A) and the k-$\omega$ Shear Stress Transport(SST) turbulence models. Driver & Seegmiller's experimental results are used to validate numerical results. Grid convergence with grid resolution and subgrid length-scale is investigated. The simulation results show that the volume method for the subgrid length-scale is more resistant to unfavorable effects of the grid size in the periodic direction than the maximum method. Using a sufficient grid resolution and an appropriate subgrid length-scale, both S-A based DDES and SST based DDES methods can provide a good correlation with the experimental data.

Thinning-Based Topological Map Building for Local and Global Environments (지역 및 전역 환경에 대한 세선화 기반 위상지도의 작성)

  • Kwon Tae-Bum;Song Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.693-699
    • /
    • 2006
  • An accurate and compact map is essential to an autonomous mobile robot system. For navigation, it is efficient to use an occupancy grid map because the environment is represented by probability distribution. But it is difficult to apply it to the large environment since it needs a large amount of memory proportional to the environment size. As an alternative, a topological map can be used to represent it in terms of the discrete nodes with edges connecting them. It is usually constructed by the Voronoi-like graphs, but in this paper the topological map is incrementally built based on the local grid map using the thinning algorithm. This algorithm can extract only meaningful topological information by using the C-obstacle concept in real-time and is robust to the environment change, because its underlying local grid map is constructed based on the Bayesian update formula. In this paper, the position probability is defined to evaluate the quantitative reliability of the end nodes of this thinning-based topological map (TTM). The global TTM can be constructed by merging each local TTM by matching the reliable end nodes determined by the position probability. It is shown that the proposed TTM can represent the environment accurately in real-time and it is readily extended to the global TTM.

Robust Extraction of Lean Tissue Contour From Beef Cut Surface Image

  • Heon Hwang;Lee, Y.K.;Y.r. Chen
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.780-791
    • /
    • 1996
  • A hybrid image processing system which automatically distinguished lean tissues in the image of a complex beef cut surface and generated the lean tissue contour has been developed. Because of the in homegeneous distribution and fuzzy pattern of fat and lean tissue on the beef cut, conventional image segmentation and contour generation algorithm suffer from a heavy computing requirement, algorithm complexity and poor robustness. The proposed system utilizes an artificial neural network enhance the robustness of processing. The system is composed of pre-network , network and post-network processing stages. At the pre-network stage, gray level images of beef cuts were segmented and resized to be adequate to the network input. Features such as fat and bone were enhanced and the enhanced input image was converted tot he grid pattern image, whose grid was formed as 4 X4 pixel size. at the network stage, the normalized gray value of each grid image was taken as the network input. Th pre-trained network generated the grid image output of the isolated lean tissue. A training scheme of the network and the separating performance were presented and analyzed. The developed hybrid system showed the feasibility of the human like robust object segmentation and contour generation for the complex , fuzzy and irregular image.

  • PDF

Optimal Matrix Standardization for Pattern Flattening Using Grid Method -Focused on Young Women's Upper Front Shell- (Grid method에 의한 3차원 형상의 평면전개를 위한 optimal matrix 표준화 연구 -$18{\sim}24$세 여성 Upper Front Shell을 중심으로-)

  • Choi, Young-Lim;Nam, Yun-Ja;Choi, Kueng-Mi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.8
    • /
    • pp.1242-1252
    • /
    • 2006
  • Many applications in computer graphics require complex, highly detailed models. However, to control processing time, it is often desirable to use approximations in place of excessively detailed models. Therefore, we have developed the notion of an optimal matrix to simplify the model surface which can then rapidly obtain high quality 2D patterns by flattening the 3D surface. Firstly, the woman's 3D body was modeled based on Size Korea data. Secondly, the 3D model was divided by shell and block for the pattern draft. Thirdly, each block was flattened by the grid and bridge method. Finally, we select the optimal matrix and demonstrate it's efficiency and quality. The proposed approach accommodates surfaces with darts, which are commonly utilized in the clothing industry to reduce the deformation of surface forming and flattening. The resulting optimal matrix could be an initiation of standardization for pattern flattening. This can facilitate much better approximations, in both efficiency and exactness.

Classification of Grid Connected Transformerless PV Inverters with a Focus on the Leakage Current Characteristics and Extension of Topology Families

  • Ozkan, Ziya;Hava, Ahmet M.
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.256-267
    • /
    • 2015
  • Grid-connected transformerless photovoltaic (PV) inverters (TPVIs) are increasingly dominating the market due to their higher efficiency, lower cost, lighter weight, and reduced size when compared to their transformer based counterparts. However, due to the lack of galvanic isolation in the low voltage grid interconnections of these inverters, the PV systems become vulnerable to leakage currents flowing through the grounded star point of the distribution transformer, the earth, and the distributed parasitic capacitance of the PV modules. These leakage currents are prohibitive, since they constitute an issue for safety, reliability, protection coordination, electromagnetic compatibility, and module lifetime. This paper investigates a wide range of multi-kW range power rating TPVI topologies and classifies them in terms of their leakage current attributes. This systematic classification places most topologies under a small number of classes with basic leakage current attributes. Thus, understanding and evaluating these topologies becomes an easy task. In addition, based on these observations, new topologies with reduced leakage current characteristics are proposed in this paper. Furthermore, the important efficiency and cost determining characteristics of converters are studied to allow design engineers to include cost and efficiency as deciding factors in selecting a converter topology for PV applications.