• Title/Summary/Keyword: grey model

Search Result 112, Processing Time 0.022 seconds

Machine Condition Prognostics Based on Grey Model and Survival Probability

  • Tangkuman, Stenly;Yang, Bo-Suk;Kim, Seon-Jin
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.4
    • /
    • pp.143-151
    • /
    • 2012
  • Predicting the future condition of machine and assessing the remaining useful life are the center of prognostics. This paper contributes a new prognostic method based on grey model and survival probability. The first step of the method is building a normal condition model then determining the error indicator. In the second step, the survival probability value is obtained based on the error indicator. Finally, grey model coupled with one-step-ahead forecasting technique are employed in the last step. This work has developed a modified grey model in order to improve the accuracy of prediction. For evaluating the proposed method, real trending data of low methane compressor acquired from condition monitoring routine were employed.

Improved Statistical Grey-Level Models for PCB Inspection (PCB 검사를 위한 개선된 통계적 그레이레벨 모델)

  • Bok, Jin Seop;Cho, Tai-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Grey-level statistical models have been widely used in many applications for object location and identification. However, conventional models yield some problems in model refinement when training images are not properly aligned, and have difficulties for real-time recognition of arbitrarily rotated models. This paper presents improved grey-level statistical models that align training images using image or feature matching to overcome problems in model refinement of conventional models, and that enable real-time recognition of arbitrarily rotated objects using efficient hierarchical search methods. Edges or features extracted from a mean training image are used for accurate alignment of models in the search image. On the aligned position and orientation, fitness measure based on grey-level statistical models is computed for object recognition. It is demonstrated in various experiments in PCB inspection that proposed methods are superior to conventional methods in recognition accuracy and speed.

Real Time Flood Forecasting Using a Grey Model (Grey 모형을 이용한 홍수량 예측)

  • Kang, Min-Goo;Park, Seung-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.535-538
    • /
    • 2003
  • A Grey model was developed to forecast short-term runoff from the Naju watershed in Korea. In calibration, the root mean square error(RMSE) of the simulated runoff of six hours ahead using Grey model ranged from 6.3 to $290.52m^3/s,\;R^2$ ranged from 0.91 to 0.99, compared to the observed data. In verification, the RMSE ranged from 75.7 to $218.9m^3/s,\;R^2$ ranged from 0.87 to 0.96, compared to the observed data. The results in this study demonstrate that the proposed model can reasonably forecast runoff one to six hours ahead.

  • PDF

Real-time Upstream Inflow Forecasting for Flood Management of Estuary Dam (담수호 홍수관리를 위한 상류 유입량 실시간 예측)

  • Kang, Min-Goo;Park, Seung-Woo;Kang, Moon-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.1061-1072
    • /
    • 2005
  • A hydrological grey model is developed to forecast short-term river runoff from the Naju watershed located at upstream of the Youngsan estuary dam in Korea. The runoff of the Naju watershed is measured in real time at the Naju streamflow gauge station, which is a key station for forecasting the upstream inflow and operating the gates of the estuary dam in flood period. The model's governing equation is formulated on the basis of the grey system theory. The model parameters are reparameterized in combination with the grey system parameters and estimated with the annealing-simplex method In conjunction with an objective function, HMLE. To forecast accurately runoff, the fifth order differential equation was adopted as the governing equation of the model in consideration of the statistic values between the observed and forecast runoff. In calibration, RMSE values between the observed and simulated runoff of two and six Hours ahead using the model range from 3.1 to 290.5 $m^{3}/s,\;R^2$ values range from 0.909 to 0.999. In verification, RMSE values range from 26.4 to 147.4 $m^{3}/s,\;R^2$ values range from 0.940 to 0.998, compared to the observed data. In forecasting runoff in real time, the relative error values with lead-time and river stage range from -23.4 to $14.3\%$ and increase as the lead time increases. The results in this study demonstrate that the proposed model can reasonably and efficiently forecast runoff for one to six Hours ahead.

Real-Time Forecasting of Flood Discharges Upstream and Downstream of a Multipurpose Dam Using Grey Models (Grey 모형을 이용한 다목적댐의 유입 홍수량과 하류 하천 홍수량 실시간 예측)

  • Kang, Min-Goo;Cai, Ximing;Koh, Deuk-Koo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.1
    • /
    • pp.61-73
    • /
    • 2009
  • To efficiently carry out the flood management of a multipurpose dam, two flood forecasting models are developed, each of which has the capabilities of forecasting upstream inflows and flood discharges downstream of a dam, respectively. The models are calibrated, validated, and evaluated by comparison of the observed and the runoff forecasts upstream and downstream of Namgang Dam. The upstream inflow forecasting model is based on the Grey system theory and employs the sixth order differential equation. By comparing the inflows forecasted by the models calibrated using different data sets with the observed in validation, the most appropriate model is determined. To forecast flood discharges downstream of a dam, a Grey model is integrated with a modified Muskingum flow routing model. A comparison of the observed and the forecasted values in validation reveals that the model can provide good forecasts for the dam's flood management. The applications of the two models to forecasting floods in real situations show that they provide reasonable results. In addition, it is revealed that to enhance the prediction accuracy, the models are necessary to be calibrated and applied considering runoff stages; the rising, peak, and falling stages.

The Effect of Background Grey Levels on the Visual Perception of Displayed Image on CRT Monitor (CRT 모니터의 배경계조도가 영상의 시각인식에 미치는 영향)

  • 김종효;박광석
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.63-72
    • /
    • 1993
  • In this paper, the effect of background grey levels on the visual perception of target image displayed on CRT monitor has been investigated. The purpose of this study is to investigate the efficacy of CRT monitor as a display medium of image Information especially in medical imaging field. Tllree sets of experiments have been performed in this study : the first was to measure the luminance response of CRT monitor and to find the best fitting equation, and the second was the psychophysical experiment measuring the threshold grey level differences between the target image and the background required for visual discrimination (or various background grey levels, and the third was to develop a visual model that is predictable of the threshold grey level difference measured in the psychophysical experiment. The result of psycophysical experiment shows that the visual perception performance is significantly degraded in the range of grey levels lower than 50, which is turned out due to she low luminance change of CRT monitor in this range while human eye has been adapted lo relatively bright ambient illumination. And it Is also shown in the simulation study using the developed visual model that the dominant factor degrading the visual performance is the reflected light from the monitor surface by ambient light in general illumination condition.

  • PDF

Life Prediction of Hydraulic Concrete Based on Grey Residual Markov Model

  • Gong, Li;Gong, Xuelei;Liang, Ying;Zhang, Bingzong;Yang, Yiqun
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.457-469
    • /
    • 2022
  • Hydraulic concrete buildings in the northwest of China are often subject to the combined effects of low-temperature frost damage, during drying and wetting cycles, and salt erosion, so the study of concrete deterioration prediction is of major importance. The prediction model of the relative dynamic elastic modulus (RDEM) of four different kinds of modified concrete under the special environment in the northwest of China was established using Grey residual Markov theory. Based on the available test data, modified values of the dynamic elastic modulus were obtained based on the Grey GM(1,1) model and the residual GM(1,1) model, combined with the Markov sign correction, and the dynamic elastic modulus of concrete was predicted. The computational analysis showed that the maximum relative error of the corrected dynamic elastic modulus was significantly reduced, from 1.599% to 0.270% for the BS2 group. The analysis error showed that the model was more adjusted to the concrete mixed with fly ash and mineral powder, and its calculation error was significantly lower than that of the rest of the groups. The analysis of the data for each group proved that the model could predict the loss of dynamic elastic modulus of the deterioration of the concrete effectively, as well as the number of cycles when the concrete reached the damaged state.

Risk assessment of water inrush in karst tunnels based on a modified grey evaluation model: Sample as Shangjiawan Tunnel

  • Yuan, Yong-cai;Li, Shu-cai;Zhang, Qian-qing;Li, Li-ping;Shi, Shao-shuai;Zhou, Zong-qing
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.493-513
    • /
    • 2016
  • A modified grey clustering method is presented to systematically evaluate the risk of water inrush in karst tunnels. Based on the center triangle whitenization weight function and upper and lower limit measure whitenization weight function, the modified grey evaluation model doesn't have the crossing properties of grey cluster and meets the standard well. By adsorbing and integrating the previous research results, seven influence factors are selected as evaluation indexes. A couple of evaluation indexes are modified and quantitatively graded according to four risk grades through expert evaluation method. The weights of evaluation indexes are rationally distributed by the comprehensive assignment method. It is integrated by the subjective factors and the objective factors. Subjective weight is given based on analytical hierarchy process, and objective weight obtained from simple dependent function. The modified grey evaluation model is validated by Jigongling Tunnel. Finally, the water inrush risk of Shangjiawan Tunnel is evaluated by using the established model, and the evaluation result obtained from the proposed method is agrees well with practical situation. This risk assessment methodology provides a powerful tool with which planners and engineers can systematically assess the risk of water inrush in karst tunnels.

Inflow Forecasting Using Fuzzy-Grey Model (Fuzzy-Grey 모형을 이용한 유입량 예측)

  • Kim, Yong;Yi, Choong Sung;Kim, Hung Soo;Shim, Myung Pil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.759-764
    • /
    • 2004
  • 본 연구는 Deng(1989)이 제시한 Grey 모형을 이용하여 성진강댐의 월유입량을 예측하였고 그 방법을 제시하였다. Grey 모형은 시계열모형이나 다른 모형에 비해 비교적 적은 수의 자료를 이용하고, 간단할 수식으로 구성되어 있는 장점이 있으나, 적은 수의 자료로 인해 입력자료가 가지는 증감의 경향(trend)으로 오차가 발생하기 쉽다. 그러므로 예측오차를 극복하기 위해서 Fuzzy 시스템을 결합한 Fuzzy-Grey 모형을 구성하였고 Fuzzy 시스템에 필요한 매개변수를 추정하기 위해 최적화기법인 유전자 알고리즘(GA; Genetic Algorithm)을 이용하였다. Grey 모형과 결합된 Fuzzy 시스템은 현재의 입력자료가 가지는 패턴과 가장 유사한 패턴의 과거자료를 이용하여 현재의 입력자료의 예측오차를 추론해내는 기능을 가진다. 오차를 추론하기 위해서 과거 월유입량 자료중 현재 입력 자료와 유사한 패턴을 Grey 상관도를 이용하여 검색하고, 보다 높은 유사성을 가지는 패턴을 선별하고자 노름(norm)을 사용하였고, 유전자 알고리즘의 탐색공간을 제한하였다. 이렇게 구성한 Fuzzy-Grey 모형을 이용하여 전국적인 가뭄년도였던 1992년, 1988년, 2001년에 대해 섬진강댐의 월유입량을 예측하였다. 오차는 1982년, 2001년, 1988년 순으로 비슷한 크기의 오차가 발생하였는데 결과를 분석하여 보면, 급격한 월유입량의 변화가 있었던 경우에 오차가 크게 발생하였으나 가뭄년도에 대해 월유입량의 불확실성이 큼에도 불구하고 비교적 월유입량의 추세를 잘 예측한 것으로 판단된다. 본 연구에서 적용한 Fuzzy-Grey 모형은 적은 수의 자료를 이용하여 예측하고 예측결과를 다시 입력자료로 사용하는 업데이트 방식을 사용하기 때문에 예측결과의 오차가 완전하게 보정되지 않으면 다음 결과에 역시 오차를 주게 되어 오차보정이 상당히 중요하다는 것을 알 수 있었다. 오차를 보다 효과적으로 보정하기 위해서는 퍼지제어에 사용되는 퍼지규칙의 수를 늘리고, 유입량에 직접적인 영향을 주는 강우량과 연계한 2변수의 Fuzzy-Grey 모형을 이용한다면 보다 정확한 유입량 예측이 가능할 것으로 사료된다.

  • PDF

Risk assessment of karst collapse using an integrated fuzzy analytic hierarchy process and grey relational analysis model

  • Ding, Hanghang;Wu, Qiang;Zhao, Dekang;Mu, Wenping;Yu, Shuai
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.515-525
    • /
    • 2019
  • A karst collapse, as a natural hazard, is totally different to a normal collapse. In recent years, karst collapses have caused substantial economic losses and even threatened human safety. A risk assessment model for karst collapse was developed based on the fuzzy analytic hierarchy process (FAHP) and grey relational analysis (GRA), which is a simple and effective mathematical algorithm. An evaluation index played an important role in the process of completing the risk assessment model. In this study, the proposed model was applied to Jiaobai village in southwest China. First, the main controlling factors were summarized as an evaluation index of the model based on an investigation and statistical analysis of the natural formation law of karst collapse. Second, the FAHP was used to determine the relative weights and GRA was used to calculate the grey relational coefficient among the indices. Finally, the relational sequence of evaluation objects was established by calculating the grey weighted relational degree. According to the maximum relational rule, the greater the relational degree the better the relational degree with the hierarchy set. The results showed that the model accurately simulated the field condition. It is also demonstrated the contribution of various control factors to the process of karst collapse and the degree of collapse in the study area.