• Title/Summary/Keyword: greenhouse effect

Search Result 1,206, Processing Time 0.025 seconds

A Binomial Sampling Plans for Aphis gossypii (Hemiptera: Aphididae) in Greenhouse Cultivation of Cucumbers

  • Kang, Taek Jun;Park, Jung-Joon;Cho, Kijong;Lee, Joon-Ho
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.596-602
    • /
    • 2012
  • Infestations of Aphis gossypii per leaf in greenhouse cultivation of cucumbers were investigated to develop binomial sampling plans. An empirical $P_T-m$ model, $ln(m)={\alpha}+{\beta}ln[-ln(1-P_T)]$, was used to evaluate relationship between the proportion of infested leaves with ${\leq}$ T aphids per leaf ($P_T$) and mean aphid density (m). Tally thresholds (T) were set to 1, 3, 5, 7, and 9 aphids per leaf to find appropriate T in greenhouse cultivation of cucumbers. Increasing sample size had little effect on the precision of the binomial sampling plan. However, the precision increased with tally threshold. The binomial model with T = 5 provided appropriate predictions of the mean densities of A. gossypii in the greenhouse cultivation of cucumbers. Using a binomial model with T = 5 (sample size = 200), a wide range of densities (1.2 - 222.8 aphids per leaf) could be estimated with precision levels of 0.346 - 0.380 for $P_T$ values between 0.15 and 0.96. Binomial models were validated at T = 5 and 7 using 12 independent data sets. Both binomial models were robust and adequately described aphid densities; most of the independent sampling data fell within 95% confidence intervals around the prediction model.

The Glass Greenhouse's Lighting Simulation for Ginseng with Solar Cell and LED (태양전지와 LED를 이용한 인삼재배용 유리온실의 조도 시뮬레이션)

  • Lee, Boong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.14-19
    • /
    • 2019
  • In this study, the Relux illumination program was used to simulate the optimal lighting design for a glass greenhouse with Si and DSSC solar-cells and LEDs. The results of the daylight simulation show that the optimum conditions were a structure angle of 90o and higher transmittance. The results of the illumination simulation produced a power consumption effect of 5.6 kwh in the summer (42[%] energy savings compared to full LED control) and 7.8 kwh in the winter (58[%] energy savings compared to full LED control). The results suggest that ginseng should be grown in an energy-saving glass greenhouse.

Analysis of the Climate inside Multi-span Plastic Greenhouses under Different Shade Strategies and Wind Regimes

  • He, Keshi;Chen, Dayue;Sun, Lijuan;Huang, Zhenyu;Liu, Zhenglu
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.473-483
    • /
    • 2014
  • In this work, the effects of shade combination, shade height and wind regime on greenhouse climate were quantified. A two-dimensional (2-D) computational fluid dynamics (CFD) model was developed based on an 11-span plastic greenhouse in eastern China for wind almost normal to the greenhouse orientation. The model was first validated with air temperature profiles measured in a compartmentalized greenhouse cultivated with mature lettuce (Lactuca sativa L., 'Yang Shan'). Next, the model was employed to investigate the effect of shade combinations on greenhouse microclimate patterns. Simulations showed similar airflow patterns in the greenhouse under different shade combinations. The temperature pattern was a consequence of convection and radiation transfer and was not significantly influenced by shade combination. The use of shade screens reduced air velocity by $0.02-0.20m{\cdot}s^{-1}$, lowered air temperature by $0.2-0.8^{\circ}C$ and raised the humidity level by 0.9-2.0% in the greenhouse. Moreover, it improved the interior climate homogeneity. The assessment of shade performance revealed that the external shade had good cooling and homogeneity performance and thus can be recommended. Furthermore, the effects of external shade height and wind regime on greenhouse climate parameters showed that external shade screens are suitable for installation within 1 m above roof level. They also demonstrated that, under external shade conditions, greenhouse temperature was reduced relative to unshaded conditions by $1.3^{\circ}C$ under a wind speed of $0.5m{\cdot}s^{-1}$, whereas it was reduced by merely $0.5^{\circ}C$ under a wind speed of $2.0m{\cdot}s^{-1}$. Therefore, external shading is more useful during periods of low wind speed.

Persistent Organic Pollutants (POPs) Residues in Greenhouse Soil and Strawberry Organochlorine Pesticides (딸기 시설재배지 토양 및 농산물 중 잔류성유기오염물질(POPs)의 잔류량 - 유기염소계 농약)

  • Lim, Sung-Jin;Oh, Young-Tak;Jo, You-Sung;Ro, Jin-Ho;Choi, Geun-Hyoung;Yang, Ji-Yeon;Park, Byung-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.6-14
    • /
    • 2016
  • BACKGROUND: Residual organochlorine pesticides (OCPs) are chemical substances that persist in the environment, bioaccumulate through the food web, and pose a risk of causing adverse effect to human health and the environment. They were designated as persistent organic pollutants (POPs) by Stockholm Convention. Greenhouse strawberry is economic crop in agriculture, and its cultivation area and yield has been increased. Therefore, we tried to investigate the POPs residue in greenhouse soil and strawberry.METHODS AND RESULTS: Extraction and clean-up method for the quantitative analysis of OCPs was developed and validated by gas chromatography (GC) with electron capture detector (ECD). The clean-up method was established using the modified quick, easy, cheap, effective, rugged, and safe(QuEChERS) method for OCPs in soil and strawberry. Limit of quantitation (LOQ) and recovery rates of OCPs in greenhouse soil and strawberry were 0.9-6.0 and 0.6-0.9 μg/kg, 74.4-115.6 and 75.6-88.4%, respectively. The precision was reliable sincerelative standard deviation (RSD) percentage (0.5-3.7 and 2.9-5.2%) was below 20, which was the normal percent value. The residue of OCPs in greenhouse soil was analyzed by the developed method, and dieldrin, β-endosulfan and endosulfan sulfate were detected at 1.6-23, 2.2-28.4 and 1.8-118.6 μg/kg, respectively. Those in strawberry were not detected in all samples.CONCLUSION: Dieldrin, β-endosulfan and endosulfan sulfate in a part of investigated greenhouse soil were detected. But those were not detected in investigated greenhouse strawberry. These results showed that the residue in greenhouse soil were lower level than bioaccumulation occurring.

A Fundamental Study for the Automatic Control System in Greenhouse Using Microcomputer(III) -A variation of temperature and humidity by the window opening ways of the even-Span type house- (마이크로컴퓨터에 의한 시설재배의 자동화에 관한 기초연구(III) -양지붕형 하우스의 창 개방방법에 따른 온.습도의 변화-)

  • 김진현;김철수;구건효;이기명
    • Journal of Biosystems Engineering
    • /
    • v.20 no.2
    • /
    • pp.162-172
    • /
    • 1995
  • The ventilation in greenhouse have been important for such as adjustment of temperature, supplying of the oxygen, prevention of the overhumidity, density adjustment of $CO_2$, discharge of harmfulness gas, etc. However, the general ventilation which had been used the quantitative control method in discharge of a property of air mechanism in greenhouse, and caused mainly in waste of the heating energy and growth obstacle of the vegetable. Therefore, this study was peformed to obtain more scientific ventilation method using by analysis and measurement of the isothermal lines according to opening of window ventilation in greenhouse, and the results are summarized as follows. 1. The ventilating amount was more influenced by rather opening amount of window than the ventilating time. 2. In window ventilation, the temperature in greenhouse was mostly changed within 5 minutes after ventilating not regard to the spot of opening, after about 10 minutes temperature became to equilibrium state under the respective ventilating conditions. 3. In opening of the skylight only, isothermal lines were complicated, therefore, a tall vegetable may be possible to damage by a cold-weather from the lower central port in greenhouse. 4. Isothermal lines were a tendency to simply in opening of a side window that may be more effective ventilation in kinds of the short vegetable. 5. In conditions of internal temperature>setting temperature>external temperature, a skylight can be suitable to open 10~20cm in order to the optimum ventilation in greenhouse. 6. In conditions of internal temperature>external temperature>setting temperature, opening of all the windows or both the side windows that can be suitable in order to obtain the optimum ventilation in greenhouse. 7. An effect of ventilation was the most excellent to open of all the windows or both the side windows, and it were also found orderly excellent to open of the side window and the skylight or the skylight only, to open of the side window only. 8. Temperature was varied as the equation of T=Tc+ (To-Tc)e-at, and the ranges of (a) values were limited within 0.34~0.68. 9. A variations of humidity were similar to that of temperature, s.

  • PDF

Effects of Shading Rate and Method of Inside Air Temperature Change in Greenhouse (차광율 및 차광방법이 온실내부의 온도변화에 미치는 영향)

  • 이석건;이현우;김길동;이종원
    • Journal of Bio-Environment Control
    • /
    • v.10 no.2
    • /
    • pp.80-87
    • /
    • 2001
  • This study was conducted to provide basic data for the design of shading facility of greenhouse. The proper distance between external shading screen and roof surface, transmissivity of shading materials, and shading effects of external and internal shadings were analyzed. About a distance of 10 cm between inclined external shading screen and roof surface was enough to guarantee the external shading effect in the greenhouse without roof vent. The inside temperature of greenhouse installed with 85% internal shading screen was lower the maximum of 4$^{\circ}C$ and mean of 2$^{\circ}C$ than that with 55% internal shading screen in both natural ventilation and no ventilation condition. The difference of soil temperature between shading and no shading greenhouse was great, but the difference by shading rate or shading method was small. The performance of external shading for controlling inside temperature down was superior to that of the internal shading. The externally inclined shading screen parallel to the roof surface of greenhouse was more effective than the externally horizontal shading screen in controlling inside temperature of greenhouse without roof vent.

  • PDF

Effect of Culture Methods on Growth and Mineral Contents in Chinese Toon (Cedrela sinensis A. Juss) (재배방법이 참죽나무 잎의 생육 및 무기물 함량에 미치는 영향)

  • Shin, Yong Seub;Lee, Mun Jung;Lim, Yang Sook;Lee, Eun Sook;Ahn, Joon Hyung;Han, Youn Yol;Lim, Jae Ha;Park, So Deuk;Chai, Jang Hea
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.392-397
    • /
    • 2012
  • In this study, we investigated the changes of growth characteristics, mineral and chlorophyll content of young leafy vegetable of Chinese toon grown under greenhouse and open fields. Results showed that growth of young leafy vegetable of Chinese toon was somewhat accelerated in greenhouse compared to the open field. In case of apical bud growth, several parameters such as plant height, number of branch, fresh weight and chlorophyll content showed similar tendency in both greenhouse and open field. In the changes of minerals, N content in apical buds recorded significant increase to 3.1 times compared to that of later buds. Its content was 1.2 times higher in greenhouse than that of open field. Mineral contents including P, Ca, Mg and Fe were significantly increased in greenhouse. Highest ascorbic acid content was observed in lateral buds grown in greenhouse and then it was followed such as lateral bud in open field, apical bud in open field, and apical bud in greenhouse, in turn. These results indicate that greenhouse culture could be applicable to new culture in order to produce young leafy vegetable of Chinese toon with high quality.

Effect of Greenhouse Cooling and Transplant Quality Using Geothermal Heat Pump System (지열-열펌프 시스템의 온실냉방 및 육묘 효과)

  • Lee, Jae-Han;Lee, Yong-Beom;Kwon, Joon-Kook;Kang, Nam-Jun;Kim, Hak-Joo;Choi, Young-Hah;Park, Jin-Myeon;Rhee, Han-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.15 no.3
    • /
    • pp.211-216
    • /
    • 2006
  • This study was carried out to investigate the effect of greenhouse cooling by a geothermal heat pump system on greenhouse temperature and growth of vegetable transplants in summer season. Greenhouse air temperature in day time was $3-4^{\circ}C$ lower in fog plus shading system than in shading, while in night time that was $5-7^{\circ}C$ lower in geothermal heat pump (GHP) plus shading system compared to shading or fogplus shading. system. Plant height of cucumber, tomato and hot pepper transplants was shortened in GHP plus shading compared to shading or fog plus shading system. And Leaf area and dry weight were slightly decreased in GHP plus shading compared to the other systems. Therefore, healthy transplant index on cucumber, tomato and hot pepper was higher in GHP plusshading than in shading or fogplusshading system.

A study on the low-carbon planning element and carbon reduction effect in public buildings -Focused on Cheongju city- (공공건축물의 저탄소 계획요소의 활용 및 탄소감축 효과분석 -충북 청주시 사례를 중심으로-)

  • Kim, Young-Hwan;Eo, Sang-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.3043-3051
    • /
    • 2013
  • As abnormal climate phenomena frequently happen due to the after-effect of the global warming, all nations suggest climate change response policies in many different fields to prevent global warming by reducing greenhouse gas. Especially, these days, the realization that the greenhouse gas from city buildings should be decreased is growing, and it is because that buildings are accounted for a quarter of national greenhouse gas emission and it is more than half the percentage of emissions within the city. Accordingly, Korean government sees the need to take an initiating role to fulfill low-carbon green policies and promotion strategies in the public sector, and wants to facilitate greenhouse gas reduction in the private sector as well. In this background, this study tries to examine the low-carbon planning element in public buildings and figure out the amount of carbon reduction and economic analysis centering Cheongju city as case study. Lastly, we propose some suggestion for low-carbon and greening of public buildings.

Effect of Zeolite Application on Growth and Yield of Chinese Cabbage and Chemical Properties of Soil Under Greenhouse Cultivation

  • Kim, Lee-Yul;Kim, Ki-In;Kang, Seong Soo;Kim, Jung-Ho;Jung, Kang-Ho;Hong, Soon-Dal;Lee, Won-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.218-224
    • /
    • 2015
  • Zeolite may help crop growth, yield increase, and salt removal. Field experiment under greenhouse cultivation was conducted to study the effect of zeolite application on growth and yield of Chinese cabbage (Brassica campestris L.) and soil. Soil was classified as Gyuam series (coarse silty, mixed, nonacid, mesic family of Aquic Fluvaquentic Eutrudepts). Six zeolite rates were 0, 3, 5, 10, 20 and $40Mg\;ha^{-1}$. Experimental design was a completely randomized design. Chinese cabbage was grown three times consecutively. Established plant number of plant and yield as fresh weight (F.W.) were measured and soil samples were taken before and after harvesting. Chinese cabbage yield was $76.9Mg\;ha^{-1}$ at a rate of $20Mg\;zeolite\;ha^{-1}$, $54.3Mg\;ha^{-1}$ at a rate of $5Mg\;zeolite\;ha^{-1}$, and $51.3Mg\;ha^{-1}$ at control (no zeolite), respectively. Second order regression analysis using zeolite rate and yield showed that optimum zeolite application rate was between 24 and $26Mg\;ha^{-1}$. The regression equation explained about 88% of the yield variability. The electrical conductivity (EC) decreased from 3.2 to $1.0dS\;m^{-1}$ for all treatments so that salt accumulation was not a concern. Based on the results, we recommend that optimum zeolite application rate is between 20 and $24Mg\;ha^{-1}$ for Chinese cabbage under greenhouse cultivation.