• 제목/요약/키워드: greenhouse area

검색결과 614건 처리시간 0.027초

시설원예 농업의 경제성과 전망 (An Economic Analysis of Greenhouse Horticulture in Kyungsangnam-do)

  • 이영만
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 1998년도 21세기 한반도 농업전망과 대책(한국작물학회.한국육종학회 공동주관 심포지움 회보)
    • /
    • pp.41-67
    • /
    • 1998
  • This study aimed at examining the investment and economic analysis of greenhouse horticultural project area by governmental subsidy project. There were only 5 project areas that economic efficiency of investment is recognized in 30 project area in Kyungsangnam-do. And there are 7 project areas to gain farm firm revenue. These were possible area to develop to farm firm. There are 4 project areas to gain farm firm revenue in 18 project areas of glass greenhouse area, and 8 project areas to gain farm firm revenue in 12 project areas-vinyl greenhouse area. The rate of return of the fixed capital is higher in the vinyl greenhouse area than in the glass greenhouse area by type of greenhouse. There were cultivated tomatoes, cucumbers, peppers, etc. in the greenhouse area. The investment efficiency of the fixed capital is higher in cucumber and pepper than in other vegetables. Flowers a re lower than the vegetable in investment efficiency.

  • PDF

Greenhouse 보온(保溫)을 위한 태양(太陽)에너지 잠열축열(潛熱蓄熱) 연구(硏究) (Study on the Latent Heat Storage of Solar Energy for Greenhouse Heating)

  • 송현갑;류영선
    • Journal of Biosystems Engineering
    • /
    • 제16권4호
    • /
    • pp.399-407
    • /
    • 1991
  • In Korea, the cultivation area under the plastic greenhouse was 1,746 ha in 1975, and 36,656 ha in 1989, it shows that the greenhouse cultivation area was increased by 21 times during last 14 years. The greenhouse cultivation area of 90~93% has been kept warm with double layers of plastic film and thermal curtain knitted with rice straw, and the rest area of 7~10% has been heated by fossil fuel energy. The use of rice straw thermal curtain is inconvenient to put it on and off, on the other hand the use of fossil fuel heating system results in the increase of production cost. To solve these problems, at first the heating load and the storable solar energy in greenhouse during the winter season were predicted to design solar utilization system, secondly a solar thermal storage system filled with latent heat storage materials was developed in this study. And then finally the thermal performance of greenhouse-solar energy storage system was analyzed theoretically and experimentally.

  • PDF

박과작물 재배 단동 비닐하우스의 천장 환기시스템 설치 실태조사 (A field survey on roof ventilation system of single-span plastic greenhouse in cucurbitaceae vegetable cultivation)

  • 여경환;유인호;이한철;정재완;최경이
    • 농업과학연구
    • /
    • 제40권4호
    • /
    • pp.317-323
    • /
    • 2013
  • This research was conducted to obtain the basic information for establishment of standard guidelines in the design and installation of roof ventilation system in single-span plastic greenhouse. To achieve this, the greenhouse structure & characteristics, cultivation status, and ventilation system were investigated for single-span greenhouse with roof ventilation system cultivating the Cucurbitaceae vegetables, watermelon, cucumber, and oriental melon. Most of single-span watermelon greenhouse in Haman and Buyeo area were a hoop-style and the ventilation system in those greenhouses mostly consisted of two different types of 'roof vent (circular or chimney type) + side vent (hole) + fan' and 'roof vent (circular type) + side vent (hole or roll-up type)'. The diameter of circular and chimney-type vent was mostly 60cm and the average number of vents was 10.5 per a bay with vent spacing of average 6.75m. The ratio of roof vent area to floor area and side vent area in the single-span watermelon greenhouse with ventilation fan were 0.46% and 7.6%, respectively. The single-span cucumber greenhouse in Haman and Changnyeong area were a gable roof type, such as even span, half span, three quarter and the 70.6% of total investigated single-span greenhouses was equipped with a roof ventilation fan while 58.8% had a circulation fan inside the greenhouse. The ratios of roof vent area to floor area in the single-span cucumber greenhouse ranged from 0.61 to 0.96% and in the case of the square roof vent, were higher than that of the circular type vent. On average, the roof ventilation fan in single-span cucumber greenhouse was equipped with the power input of 210W and maximum air volume of $85.0m^3/min$, and the number of fans was 9.75 per a bay. The number of roof vent of single-span oriental melon greenhouse with only roll-up type side vent ranged from 8 to 21 (average 14.8), which was higher than that of other Cucurbitaceae vegetables while the vent number of the greenhouse with a roof ventilation fan was average 7 per a bay.

시설원예용 난방온실의 온열환경 분석에 관한 연구 (A Study on Thermal Environment Analysis of a Greenhouse)

  • 송뢰;박윤철
    • 한국지열·수열에너지학회논문집
    • /
    • 제14권3호
    • /
    • pp.15-20
    • /
    • 2018
  • To study the effects of solar energy in a greenhouse, outdoor air temperature and wind speed on inside air temperature, a simulation model for forecasting the greenhouse air temperature was conducted on the basis of the energy and mass balance theory. Application of solar energy to the greenhouse is major area in the renewable energy research and development in order to save energy. Recently, considering the safety and efficiency of the heating of greenhouse, clean energy such as geothermal and solar energy has received much attention. The analysed greenhouse has $50m^2$ of ground area which located in jocheon-ri of Jeju Province. Experiments were carried out to collect data to validate the model. The results showed that the simulated air temperature inside a plastic greenhouse agreed well with the measured data.

지하수관측망을 이용한 강변 시설재배지역 지하수위 변화 특성 분석 (Analysis of Groundwater Level Changes Near the Greenhouse Complex Area Using Groundwater Monitoring Network)

  • 백미경;김상민
    • 한국농공학회논문집
    • /
    • 제64권6호
    • /
    • pp.13-23
    • /
    • 2022
  • The purpose of this study was to analyze the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes, which are mainly situated along rivers where water resources are easy to secure. The groundwater observation network in Miryang, Gyeongsangnam-do, located downstream of the Nakdong River, was selected for the study area. We classified the groundwater monitoring well into the greenhouse (riverside) and field cultivation areas (plain and mountain) to compare the groundwater impact of water curtain cultivation in the greenhouse complex. The characteristics of groundwater level changes classified by terrain type were analyzed using the observed data. Riverside wells have significant permeability coefficients and are close to rivers, so they are greatly affected by river flow and precipitation changes so that water level shows a specific pattern of annual changes. Most plain wells do not show a constant annual change, but observation wells near small rivers and small-scale greenhouse cultivation areas sometimes show annual and daily changes in which the water level drops during winter. Compared to other observation wells, mountain wells do not show significant yearly changes in water level and show general characteristics of bedrock aquifer well with a low permeability coefficient.

경남 시설원예지 농업용 지하수의 수질 현황 (Ground Water Pollution Status of Agricultural Water Source of Greenhouse Area in Gyeongnam)

  • 이성태;조주식
    • 한국환경과학회지
    • /
    • 제7권4호
    • /
    • pp.531-540
    • /
    • 1998
  • To examine water pollution status of agricultural water source of greenhouse area in Gyeongnam, the ground water quality was investigated six times at five areas in Gyeongnam from October in 1995 to March in 1996. pH of ground water were generally in the range of 5.9∼7.6. But a site in Changnyeong area was out of the range In 6.0∼8.5 which is water quality standard for agriculture. COD of ground water was below 2.8mg/l. NH4+-N contents in ground water was very low in all areas and the average of NO3'-N contents in Changnyeong and Chinju area was high with 13.2 and 11.5mg/l respectively. Hardness, SO42- and EC of ground water In Hmm were higher than any other area. Fe and Mn contents of ground water in Kimhae were higher than any other area with 7.17 and 0.95wt, respectively. Heavy metals such as Cu, Cd, Pb and Zn of ground waker were below water Quality standard far agriculture but some sites were over. Between COD and SS in ground water were not correlated with rInG.338,'but between COD and NH4+, -N were positively correlated. And EC was positively correlated with Ca2+, Mg2+ and SO42-. Ground water pollution status of agricultural water source of greenhouse area in Gyeongnam was genrrally high in order of Sacheon < Chinju < Hmn < Kimhae < Changnyeong.

  • PDF

온실(溫室) 난방(暖房)을 위한 태양열(太陽熱)-지하(地下) 잠열(潛熱) 축열(蓄熱) 시스템 개발(開發) (Development of Solar Energy-Underground Latent Heat Storage System for Greenhouse Heating)

  • 송현갑;류영선
    • Journal of Biosystems Engineering
    • /
    • 제19권3호
    • /
    • pp.211-221
    • /
    • 1994
  • In this study, to maximize the solar energy utilization for greenhouse heating during the winter season, solar energy-underground latent heat storage system was constructed, and the thermal performance of the system has been analyzed to obtain the basic data for realization of greenhouse solar heating system. The results are summarized as follows. 1. $Na_2SO_4{\cdot}10H_20$ was selected as a latent heat storage material, its physical properties were stabilized and the phase change temperature was controlled at $13{\sim}15^{\circ}C$. 2. Solar radiation of winter season was the lowest value in December, and Jinju area was the highest and the lowest value was shown in Jeju area. 3. The minimum inner air temperature of greenhouse with latent heat storage system(LHSS) was $7.0{\sim}7.5^{\circ}C$ higher than that of greenhouse without LHSS and was $7.0{\sim}11.2^{\circ}C$ higher than the minimum ambient air temperature. 4. Greenhouse heating effect of latent heat storage system was getting higher according to the increase of solar radiation and was not concerned with the variation of minimum ambient air temperature. 5. The relative humidity of greenhouse with latent heat storage system was varied from 50 to 85%, but that of greenhouse without LHSS was varied from 30 to 93%. 6. The heating cost of greenhouse with solar energy-latent heat storage system was about 24% of that with the kerosene heating system.

  • PDF

딸기 전조재배 온실의 인공광 설치실태 및 조도분포 조사분석 (Current Status of Lighting System and Illumination Distribution in the Greenhouse for Light Culture of Strawberries)

  • 김태한;장익주;이경진
    • Journal of Biosystems Engineering
    • /
    • 제24권1호
    • /
    • pp.19-24
    • /
    • 1999
  • Motivated by the need for developing the more efficient lighting system for light culture of strawberries in the greenhouse, this paper aims at acquiring and suggesting more concrete and scientific foundation of illuminating position, numbers of light source by investigating the types of lighting system and illumination distribution in the greenhouse for light culture of strawberries. The results of investigation and experiment are summarized as following below: 1. The types of lighting system used in the greenhouse producing strawberries were classified as 1 line and 2 lines lighting system. 2. As for the arranging types of artificial light, 2 lines lighting system, were classified as Z-type, N-type and W-type. (Refer Fig. 3) 3. The results of illumination distribution for Z-type, N-type and W-type of 2 lines illuminating system in the greenhouse with a small size tunnel measured at the height of 1.5m from the ground with 220V, 100W lamp in 6m light gap showed that maximum illuminance are 961x, 1211x, 1251x, minimum illuminance are 4.41x, 4.71x, average illuminance are 33.71x, 43.11x, 44.51x and standard deviations are 28.31x, 35.41x, 38.31x at each types. 4. Proportion of the area below optimal illuminance to floor area at the two lines illuminating system of Z-, N-, and W-type in greenhouse were appeared as 39.4%, 26.0% and 26.3%, respectively. Also proportion of the area over optimal illuminance to floor area at the two lines illuminating system of Z-, N-, W-type in greenhouse were appeared as 16.8%, 14% and 14.7%, respectively. Thus N-type was superior to the others from the view points of optimal illumination distribution and energy saving.

  • PDF

논 지역 시설재배지에서의 유기물 및 영양염류 유출 특성 (Runoff characteristics of organic matters and nutrients from greenhouse site in paddy field area)

  • 이근후;옥정훈;유시창;유찬
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.604-609
    • /
    • 2005
  • Runoff characteristics of organic matters and nutrients from greenhouse site in paddy field area were investigated during the irrigation period in 2004. The greenhouse selected which situated near the Nam river, Jinju, Korea used the ground water as the irrigation purpose. And, the rotating system of paddy field to upland was adapted as a cropping system which is a typical practice in this area. Various items such as total phosphorus(T-P), total nitrogen(T-N), dissolved oxygen(DO), BOD, etc. were observed to figure out the seasonal and spatial variation in the study sites. it was found that the risk of water pollution due to the contamination of nutrients in canals in green house sites, and their neighbouring small sized streams are much higher than those in ordinary paddy field areas. Further surveys and investigations are required to find out the counter measures to reduce water pollution occurred in greenhouse sites.

  • PDF

시설농업의 용수 이용실태 조사분석 (A Study on tHe Utilization of Irrigation Water for Greenhouse Farming)

  • 이남호;황한철
    • 농촌계획
    • /
    • 제4권2호
    • /
    • pp.96-102
    • /
    • 1998
  • A field survey with interview was conducted to get information on the irrigation water usage for greenhouse farming. Three study regions were selected which represent geographical characteristics such as ,neighboring urban area, flat-field area, and mountainous area. Several items were investigated and analysed such as location of greenhouse, type of irrigation water resources, type of irrigation method used, way to decide intake facility size, farmers'satisfaction on intake facilities performance and water quality, and needs for water quality test. It was found that greenhouse farmers did not take an advantage of technical assistances. Proper criteria or guidelines for selection and operation of water intake facilities were not available.

  • PDF