• Title/Summary/Keyword: green-emitting

Search Result 445, Processing Time 0.037 seconds

A Study on the Fabrication and Characteristic Analysis of Organic Light Emitting Device using BAlq (BAlq를 적용한 유기발광소자의 제작 및 특성 분석에 관한 연구)

  • 오환술;황수웅;강성종
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.83-88
    • /
    • 2004
  • BAlq was fabricated as for hole blocking layer in the OLED devices to investigate its electrical and optical characteristics. Device structure was ITO/$\alpha$ -NPD/EML/BAlq/Alq3/Al:Li using TYG-201, DPVBi (4, 4 - Bis (2, 2 - diphenylethen-1 - yls) - Biphenyl), Alq and DCJTB (4-(dicyanomethylene)-2- (1-propyls)6-methy 4H-pyrans) as green emitting material, blue emitting material, host material for red emission and red emitting guest material respectively. The OLED device showed optimum working voltage and electron density at 600 cd/$m^2$ when thickness of BAlq is 25$\AA$ for RGB OLED devices while their efficiencies are better at 50$\AA$ of BAlq. Red and blue color OLEDs also fabricated using 30$\AA$ thickness of BAlq and compared with those without BAlq layer. BAlq was more effective in electrical properties such as working voltage, current density and efficiency of red OLED than blue and green ones. This study describes that 30$\AA$ is optimum thickness of BAlq for best performance of full color OLED devices when using BAlq as a hole blocking material.

White-light-emitting Organic Electroluminescent Device Based On Incomplete Energy Transfer

  • Song, Tae-Joon;Ko, Myung-Soo;Lee, Sung-Soo;Cho, Sung-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.701-705
    • /
    • 2002
  • In order to realize full color display, two approaches were used. The first method is the patterning of red, green, and blue emitters using a selective deposition. Another approach is based on a white-emitting diode, from which the three primary colors could be obtained by micro-patterned color filters. White-light-emitting organic light emitting devices (OLEDs) are attracting much attention recently due to potential applications such as backlights in liquid crystal displays (LCDs) or other illumination purposes. In order for the white OLEDs to be used as backlights in LCDs, the light emission should be bright and have Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.33, 0.33). For obtaining white emission from OLEDs, different colors should be mixed with proper balances even though there are a few different methods for mixing colors. In this study, we will report a white organic electroluminescent device based on an incomplete energy transfer. In which the blue and green emission come from the same layer via incomplete energy transfer.

  • PDF

Enhancement of the efficiency in green organic light-emitting devices utilizing multiple heterostructures acting as a hole transport layer

  • Choo, D.C.;Lee, D.U.;Yoon, Y.B.;Kim, T.W.;Kim, J.H.;Seo, J.H.;Kim, Y.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1024-1027
    • /
    • 2006
  • The electrical and the optical properties of organic light-emitting devices (OLEDs), with and without various kinds of multiple heterostructures were investigated. The efficiency in green OLEDs were significantly enhanced by the structure of the multiple heterostructures acting as a hole transport layer (HTL) rather than by the number of periods. These results indicate that highly efficient green OLEDs utilizing multiple heterostructures acting as a HTL can be fabricated.

  • PDF

Development of an alignment free mask patterning as a new fabrication method for high efficiency white organic light-emitting diodes

  • Joo, Chul-Woong;Jeon, Soon-Ok;Yook, Kyoung-Soo;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.752-754
    • /
    • 2009
  • High efficiency white organic light emitting diodes were fabricated by using an alignment free mask patterning method. Only red/green emission without any blue emission was observed in the red/green patterned region and blue emission was emitted in other area. A combination of the red/green and blue emission gave a high efficiency white emission. A maximum current efficiency of 30.7 cd/A and a current efficiency of 25.9 cd/A at 1000 cd/$m^2$ were obtained with a color coordinate of (0.38, 0.45).

  • PDF

New green fluorescent materials for OLEDs

  • Lee, Chil-Won;Lee, Eun-Jung;Kim, Joon-Woo;Yun, Jong-Hyeok;Lee, Jun-Yeob;Gong, Myoung-Seon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.628-631
    • /
    • 2007
  • We developed new green emitting materials based on the spiro moieties. The introduction of a spiro linkage into the structure of DJGH series lead to a reduction in crystallization tendency and an increase in glass transition temperature. they showed much better emitting efficiency and color purity than commercial host material $Alq_3$.

  • PDF

Plant Growth and Morphogenesis Control in Transplant Production System using Light-emitting Diodes(LEDs) as Artificial Light Source - Spectral Characteristics and Light Intensity of LEDs - (인공광원으로 발광다이오우드를 이용한 묘생산 시스템에서 식물생장 및 형태형성 제어 - 발광다이오우드의 분광 특성 및 광강도 -)

  • 김용현
    • Journal of Biosystems Engineering
    • /
    • v.24 no.2
    • /
    • pp.115-122
    • /
    • 1999
  • Because of their small mass, volume, solid state construction and long life, light-emitting diodes(LEDs) hold promises as a lighting source for intensive plant production system. Spectral characteristics and light intensity of LEDs were tested to investigate their feasibility as artificial lighting sources for growth and morphogenesis control in transplant production system. Blue, green, and red LEDs had a peak-emission wavelength at 442nm, 522nm, and 673nm, respectively. Their half width defined as the difference between upper and lower wavelength in the intensity equivalent to 50% of the maximum intensity showed 26nm, 41nm, and 74nm, respectively. Photosynthetic photon flux(PPE) at the distance of 9cm under the LEDs array was measured as $235{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for red, $109{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for green, and $75{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for blue LEDs. At the same distance, green LEDs had the illuminance of 13,0001x, nine to ten times higher than those of red and blue LEDs. Red, green, and blue LEDs at a distance of 9cm had the irradiance of $46W{\cdot}m^{-2},\;19W{\cdot}m^{-2},\;8W{\cdot}m^{-2}$, respectively. Light intensity of blue, green, and red LEDs increased linearly in proportion to the magnitude of the current applied to the operating circuit. Thus the light intensity of LEDs was controlled by the applied current in operating circuit.

  • PDF

Evaluation of light-emitting diode colors and intensities on slaughter performance, meat quality and serum antioxidant capacity in caged broilers

  • Zichao Tan;Chuanfeng Zhou;Xueping Shi;Lihua Wang;Shubai Wang
    • Animal Bioscience
    • /
    • v.36 no.5
    • /
    • pp.731-739
    • /
    • 2023
  • Objective: This study was to evaluate the interaction of three different light-emitting diode (LED) light colors (white, green, and blue) and three intensities (5, 10, and 15 lx) on slaughter performance, meat quality and serum antioxidant capacity of broilers raised in three-layer cages. Methods: A total of 648 (8-days-old) male broiler chicks (Cobb-500) were randomly assigned in 3×3 factorially arranged treatments: three light colors (specifically, white, blue, and green) and three light intensities (namely, 5, 10, and 15 lx) for 35 days. Each treatment consisted of 6 replicates of 12 chicks. The test lasted for 35 days. Results: The semi-eviscerated weight percentage (SEWP) in 5 lx white was higher than that in 15 lx (p<0.01). The eviscerated weight percentage (EWP) (p<0.05) and water-loss percentage (WLP) (p<0.01) decreased in 10 lx white light than those in green light. Under blue light, the content of hypoxanthine (Hx) in muscle was lower than that under white and green light (p<0.01). The content of malondialdehyde (MDA) in 15 lx blue light was higher than that in 10 lx green light (p<0.05). Light color had an extremely significant effect on thigh muscle percentage, WLP, Hx, and crude protein content (p<0.01). Light intensity had a significant effect on SEWP (p<0.05), EWP (p<0.05), lightness (L*) value (p<0.05), WLP (p<0.01), and the contents of superoxide dismutase (p<0.05), MDA (p<0.01), glutathione peroxidase (p<0.01). Conclusion: Using white LED light with 10 lx light intensity can significantly improve the chicken quality of caged Cobb broilers, improve the content of inosine acid in chicken breast and enhance the antioxidant capacity of the body. We suggest that the broiler farm can use 10 lx white LED light source for lighting in 8 to 42 days.

White Light-Emitting Electroluminescent Device with a Mixed Single Emitting Layer Structure (혼합 발광층을 이용한 백색 전계발광소자의 발광특성)

  • 김주승;서부완;구할본;조재철;박복기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.606-609
    • /
    • 1999
  • We fabricated white light-emitting diode which have a mixed single emitting layer containing poly(N-vinylcarbazole), trois(8-hydroxyquinoline)aluminum and poly(3-hexylthiophene) and investigated the emission properties of it. It is possible to obtain a blue light from poly(N-vinylcarbazole). green light from tris(8-hydroxyquinoline)aluminum and red light from poly(3-hexylthiophene). The fabricated device emits white light with slight orange light. We think that the energy transfer in a mixed layer occurred from PVK to Alq₃ and P3HT resulted in decreasing the blue light intensity from PVK. We find that the efficiency of the white light electroluminescent device can be improved by injecting electron more effectively and blue light need to improve the color purity of white light.

  • PDF

Effect of Stepwise Doping on Performance of Green Phosphorescent Organic Light-Emitting Diodes (단계적 도핑구조에 따른 녹색 인광 유기발광 다이오드의 성능에 미치는 효과에 관한 연구)

  • Hwang, Kyo-Min;Lee, Song-Eun;Lee, Seul-Bee;Yoon, Seung-Soo;Kim, Young-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • We investigated green phosphorescent organic light-emitting diodes with stepwise doping to improve efficiency roll-off and operational lifetime by efficient distribution of triplet excitons. The host material which was 4,4,N,N'-dicarbazolebiphenyl (CBP) of bipolar characteristic that can control the carrier in emitting layer (EML). When the EML devided into four parts with different doping concentration, each devices shows various efficiency roll-off and lifetime enhancement. The distribution of the carrier and excitons in the EML can be confirmed by using stepwise doping structure. The properties of device C exhibited luminous efficiency of 51.10 cd/A, external quantum efficiency of 14.88%, respectively. Lifetime has increased 73.70% compared to the reference device.

Effect of Changing the Thickness of Charge Control Layer on Performance of Green Phosphorescent Organic Light-Emitting Diodes (녹색 인광 유기발광다이오드에서 전하 조절층의 두께 변화가 성능에 미치는 효과에 대한 연구)

  • Lee, Dong-Hyung;Lee, Seok-Jae;Koo, Ja-Ryong;Lee, Ho-Won;Lee, Song-Eun;Yang, Hyung-Jin;Park, Jae-Hoon;Kim, Young-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.244-250
    • /
    • 2013
  • We investigated green phosphorescent organic light-emitting diodes (PHOLEDs) with charge control layer (CCL) to produce high efficiency. The CCL and host material which was 4,4,N,N'-dicarbazolebiphenyl (CBP) of bipolar property can control the carrier movement in emitting layer (EML). The performance improvement by the insertion of CCL was realized to the well confined exciton and the reduced triplet exciton quenching effect in EML. Five types of devices (Device A, B, C, D, and E) were fabricated following the thickness of CCL within EML. The properties of device D using optimized thickness of CCL showed external quantum efficiency of 16.22% and luminous efficiency of 55.76 cd/A, respectively.