• Title/Summary/Keyword: green tide

Search Result 42, Processing Time 0.018 seconds

The Calculation Method of Cell Count for the Bloom-forming (Green tide) Cyanobacterium using Correlation between Colony Area and Cell Number in Korea (군체 크기와 세포수 상관관계를 이용한 녹조 유발 남조류의 세포수 산정 방법)

  • You, Kyung-A;Song, Mi-Ae;Byeon, Myeong-Seop;Lee, Hae-Jin;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.350-357
    • /
    • 2014
  • Harmful Algal Bloom Alert System (HABAS) for drinking water supply is require to fast and accurate count as system monitoring of cyanobacterium occurrence and inducing a response action. We measured correlation between colony size and cell number including genus Anabaena, Aphanizomenon, Microcystis, Oscillatoria which are targeted at HABAS, deducted from standard formula, and suggested calculation method from colony size to the number of cell. We collected cyanobacteria samples at Han River (Paldang reservoir), Nakdong River (Dalseong weir, Changnyeonghaman weir) and Geum River (Gobok reservoir) from August to October, 2013. Also, we studied correlation between colony size and cell number, and calculated regression equation. As a result of correlation of harmful cyanobacteria by genus, Anabaena spp. and Aphanizomenon spp. having trichome showed high correlation coefficients more than 0.93 and Microcystis spp. having colony showed correlation coefficient of 0.76. As a result of correlation of harmful cyanobacteria by species, Anabaena crassa, Aphanizomenon flos-aquae, A. issatschenkoi, Oscillatoria curviceps, O. mougeotii having trichome showed high correlation coefficients from 0.89 to 0.96, and Microcystis aeruginosa, M. wessenbergii, M. viridis having colony showed correlation coefficients from 0.76 to 0.88. Compared with other genus Microcystis relatively showed low correlation because even species and colony size are the same, cell density and cell size are different from Microcystis strains. In this study, using calculated regression might be fast and simple method of cell counting. From now on, we need to secure additional samples, and make a decision to study about other species.

An Evaluation of Aquatic Environment in the Okchon Stream-Embayment Watershed, Korea (옥천천 (만) 유역 하천과 만입부의 수환경 평가)

  • Kim, Dong-Sup;Lee, Hye-Keun;Maeng, Sung-Jin;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.181-190
    • /
    • 2003
  • An investigation was conducted on the aquatic environment of the Okchon Stream watershed six times from May to September 2002. The results of investigation revealed that variation of environmental factors were quite significant for each stream and reach, showing a significant difference between running water and stagnant water. Aquatic nutrients were relatively low in the upstream, gradually increasing as the influx of treated wastewater into the stream increased. This suggests that the point source definitely affected the nutrient content of the stream. In particular, the variations of SRP and $NH_4$ were very distinct in the watershed compared to other nutrients. Thus, it can be considered as a major factor in evaluating the effect of treated wastewater. Immediately after the influx of treated waste-water, the average content of SRP rose to 919.3 ${\mu}g$ P/l. This was a very effective level in the watershed, suggesting that the percentage of the nutrients in the water was controlled by the content of P. The constant supply of treated wastewater was found to be a critical factor in triggering the increase in chl-a in the embayment of the stream. With the proliferation of the blue-green algae, the content of chl- a ranged 234.5${\sim}$1,692.2 ${\mu}g/l$. The maximum standing crops exceeded $1.0{\times}10^6$ cells/ml in August, which was more than 200 times the level for red tide in the freshwater. This result was well reflected in other environmental factors, with 100% of AFDM/TSS reflecting the severity of water pollution by algae. Therefore, the reduction of P and N con-tents in the treated wastewater is critical in improving the aquatic environment of the stream as well as water quality management for the reservoir.