• 제목/요약/키워드: green materials

검색결과 2,306건 처리시간 0.039초

A Critique of The Environmental Green Concept in the view of representative issues for products -Usage, Aesthetics in product design, Manufacturing, and Products' price-

  • Ryu Seung-Ho
    • 디자인학연구
    • /
    • 제19권3호
    • /
    • pp.105-116
    • /
    • 2006
  • In product manufacturing industries, a recent issue is the green concept. The green concept is a complicated area. If the green concept is for products, its serious issues have to be criticized. Although the importance of the green concept has overflowed, its influences have not been disputed vigorously. So this study is to critic the serious issues of the green concept in aesthetics in product design, manufacturing, and products' prices. The green environment has four representative elements: systems, policies, minds, and technologies, but they are not in the field of design. An element of the green concept, green design is also a sub concept for design, so it should be based on aesthetics. It is green aesthetics. But since green design first appeared, it has never approached by aesthetics because it has mostly had social meanings and expectations. So for green aesthetics, to think about what makes a product, and what can be aesthetic issues among them are important. Products consist of form, structure, material, and technology. Form means different shapes in a structure, but there cannot be any specific directions for a green concept. Structure has two kinds: interior and exterior structure. While interior structure has a technological character, exterior structure is deeply related with aesthetics, but it has also no chance for green concept. Material can be divided as two also: aesthetic and technological. Aesthetics materials mean the colors, opacity, and tactile sense of materials, but they are not aesthetic issues. Technological materials are recycled materials or non-recycled materials. Even if recycled materials are used today, they are close to systems or policies rather than aesthetics. With this result, green aesthetics is a very difficult concept. Second, green products are usually 30% more expensive than general products. But every consumer has his or her own economical conditions, and nobody can coerce consumers into buying expensive green products for green environments. And green products without good quality cannot satisfy consumers. This means that green concept is not accomplished by just manufacturing green products. Third, although a lot of proposals have appeared as green design in exhibitions, most of them are close to craft because they are so hard to be manufactured. Manufacturing is the first consideration for products. These three issues are enough to explain why green concept is complicated in manufacturing products. If they are not solved, the green concept is just a fiction. So if this study proposes a turning point against blind green-oriented atmosphere, it will be meaningful enough.

  • PDF

겔-케스팅한 알루미나 성형체에서 출발입도가 공정변수 및 성형 미세구조에 미치는 영향 (Effects of particle size on processing variables and green microstructure in gelcast alumina green bodies)

  • 하창기;김재원;조창용;백운규;정연길
    • 한국재료학회지
    • /
    • 제11권10호
    • /
    • pp.869-878
    • /
    • 2001
  • Alumina $(Al_2O_3)$ green bodies were fabricated by gel-casting using three kinds of alumina with different particle size (mean particle size: 4.6 $\mu\textrm{m}$, 0.32 $\mu\textrm{m}$, 10nm). The effects of particle size on gel-casting process and green microstructure were investigated. The optimum dispersion conditions using ammonium salt (D-3019) as dispersant were 0.2 wt% (4.63 $\mu\textrm{m}$), 0.5 wt% (0.32 $\mu\textrm{m}$), and 5.0 wt% (10 nm), in high solid loading. The optimum solid loading of each starting material for gel-casting was obtained as 59 vol% (4.63 $\mu\textrm{m}$), 57 vol% (0.32 $\mu\textrm{m}$), 15 vol% (10 nm), depending on particle size, indicating that nano-size particle (10 nm) represent lower solid loading as high specific surface area than those of other two starting materials. The drying at ambient conditions (humidity; $\thickapprox$90%) was performed more than 48hrs to enable ejection of the part from the mold and then at $120^{\circ}C$ for 2hrs in an air oven, showing no crack and flaw in the dried green bodies. The pore size and distribution of the gelcast green bodies showed the significant decrease with decreasing particle size. Green microstructure was dependent on the pore size and distribution due to the particle size, and on the deairing step. The green density maximum obtained was 58.9% (4.63 $\mu\textrm{m}$), 60% (0.32 $\mu\textrm{m}$), 47% (10 nm) theoretical density (TD), and the deairing step applied before gel-casting did not affect green density.

  • PDF

Enhanced Photovoltaic Performance of Perovskite Solar Cells by Copper Chloride (CuCl2) as an Additive in Single Solvent Perovskite Precursor

  • Kayesh, Md. Emrul;Matsuishi, Kiyoto;Chowdhury, Towhid H.;Kaneko, Ryuji;Noda, Takeshi;Islam, Ashraful
    • Electronic Materials Letters
    • /
    • 제14권6호
    • /
    • pp.712-717
    • /
    • 2018
  • In this letter, we have introduced copper chloride ($CuCl_2$) as an additive in the $CH_3NH_3PbI_3$ precursor solution to improve the surface morphology and crystallinity of $CH_3NH_3PbI_3$ films in a single solvent system. Our optimized perovskite solar cells (PSCs) with 2.5 mol% $CuCl_2$ additive showed best power conversion efficiency (PCE) of 15.22%. The PCE of the PSCs fabricated by $CuCl_2$ (2.5 mol%) additive engineering was 56% higher than the PSC fabricated with pristine $CH_3NH_3PbI_3$.

Properties of recycled green building materials applied in lightweight aggregate concrete

  • Wang, Her-Yung;Hsiao, Darn-Horng;Wang, Shi-Yang
    • Computers and Concrete
    • /
    • 제10권2호
    • /
    • pp.95-104
    • /
    • 2012
  • This study uses recycled green building materials based on a Taiwan-made recycled mineral admixture (including fly ash, slag, glass sand and rubber powder) as replacements for fine aggregates in concrete and tests the properties of the resulting mixtures. Fine aggregate contents of 5% and 10% were replaced by waste LCD glass sand and waste tire rubber powder, respectively. According to ACI concrete-mixture design, the above materials were mixed into lightweight aggregate concrete at a constant water-to-binder ratio (W/B = 0.4). Hardening (mechanical), non-destructive and durability tests were then performed at curing ages of 7, 28, 56 and 91 days and the engineering properties were studied. The results of these experiments showed that, although they vary with the type of recycling green building material added, the slumps of these admixtures meet design requirements. Lightweight aggregate yields better hardened properties than normal-weight concrete, indicating that green building materials can be successfully applied in lightweight aggregate concrete, enabling an increase in the use of green building materials, the improved utilization of waste resources, and environmental protection. In addition to representing an important part of a "sustainable cycle of development", green building materials represent a beneficial reutilization of waste resources.

거주자 안전을 고려한 친환경 건축재료 선정 시스템개발 (Development on the Selection of Green Construction Materials for Residental Safety)

  • 송혁;정우양
    • 한국안전학회지
    • /
    • 제20권4호
    • /
    • pp.63-70
    • /
    • 2005
  • It has been used so many kinds of architectural materials and interior products in current building construction, and use of composite architectural materials is increasing with the development of chemical technology. As the green architecture has become the center of public interest, much effort is conducted in advanced countries on the LCA point of view, such as restriction of architectural materials that emitting pollution substances, developing of Non-Toxic architectural materials, and recycling of used materials, etc. with the cooperation of related organizations, material manufacture companies, and construction companies. Because the kinds of materials to be used in building constructions are so various, there might be some possibility of personal and subjective choice at the time of materials selection resulting the missing the requirements of building components and the choice of harmful materials to human. One way to resolve the material problem is to present the green architectural materials which coincide with the quality performance at service and not harmful to man and nature. At this point of view, this study aims to develop the material classification model by investigating the major labelling system about green architectural materials in both domestic and abroad and to implement an efficient material selection system by making a powerful database of environmental standard and quality basis of building requirements.

분말 표면 조도의 3차원 레이저 분석기를 이용한 정량화와 압분성형체 강도에 미치는 영향 분석 (Quantitative Analysis of Roughness of Powder Surface Using Three-Dimensional Laser Profiler and its Effect on Green Strength of Powder Compacts)

  • 이동준;윤은유;김하늘;강희수;이언식;김형섭
    • 한국분말재료학회지
    • /
    • 제18권5호
    • /
    • pp.406-410
    • /
    • 2011
  • Green strength is an important property of powders since high green strength guarantees easy and safe handling before sintering. The green strength of a powder compact is related to mainly mechanical and surface characters, governed by interlocking of the particles. In this study, the effect of powder surface roughness on the green strength of iron powders was investigated using a transverse rupture test. Three-dimensional laser profiler was employed for quantitative analyses of the surface roughness. Two different surface conditions, i.e. surface roughness, of powders were compared. The powders having rough surfaces show higher green strength than the round surface powders since higher roughness leads increasing interlocked area between the contacting powders.

Green Machining of the Warm Compacted Sinter Hardenable Material

  • Cheng, Chao-Hsu;Chiu, Ken;Guo, Ray
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.295-296
    • /
    • 2006
  • High hardness of P/M parts can be obtained in the cooling section of the sintering furnace by using sinter hardenable materials, thus the post-sintering heat treatment can be eliminated. However, the sinter hardened materials would have difficulties in secondary machining if it is required, which will limit the applications of sinter hardenable materials in the machined parts. Recent development in warm compaction technology can enable us not only to achieve the high green density up to $7.4\;g/cm^3$, but also the high green strength which is needed for green machining. Therefore by using warm compaction technology, the green machining can be applied to sinter hardenable materials for the high density, strength and hardness P/M parts. In the present study, a pre-alloyed steel powder, ATOMET4601, was used by mixing with 2.0% copper, 1.0% nickel, 0.9% graphite and a proprietary lubricant using a binder treatment process - FLOMET. The specimens were compacted and green machined with different machining parameters. The machined surface finish and part integrity were evaluated in selecting the optimal conditions for green machining. The possibility of applying the green machining to the high-density structural parts was explored.

  • PDF