• Title/Summary/Keyword: green energy

Search Result 2,727, Processing Time 0.027 seconds

Energy Saving Effects of Green Roof in Exiting Buildings according to Different Insulation Levels (기존 노후 건물의 단열 성능에 따른 옥상 녹화 시스템 설치시 에너지 성능 변화)

  • An, Kyeong A;Han, Seung Won;Moon, Hyeun Jun
    • Journal of Korean Living Environment System
    • /
    • v.21 no.6
    • /
    • pp.959-964
    • /
    • 2014
  • Energy performance of building envelope components, including external walls, floors, roofs, windows and doors, is crutial for determining how much energy is required for heating and cooling in a building. Among various building technologies, a green roof system can be a good option for reducing heat gain and loss in new buildings as well as existing buildings for green remodeling. This paper evaluates the performance of green roof systems according to soil depth and Leaf Area Index (LAI) for existing buildings. It also attempts to quantify the energy saving effects on new and existing buildings with different insulation levels. Thermal performance of green roofs is mainly dependent on soil thickness and LAI. Installation of green roofs in deteriorated existing buildings can lead to improvements in roof insulation, due to the soil layer. An increase in soil depth leads to a decrease in heating load, regardless of conditions of vegetation on the green roof. Larger LAI values may reduce cooling loads in the cooling season. Installation of green roof in deteriorated existing buildings showed bigger energy saving effect in comparison to a case in new buildings. A simulation study showed that the installation of green roof systems in deteriorated existing buildings with low insulation levels, due to low thermal performance requirements when constructed, could improve the energy performance of the buildings similar or better to the peformance on new buildings with the most updated insulation standard. Thus, when remodeling a deteriorated building, green roofs could be a good option to meet the most recent energy requirements.

A Study on the Energy Level of Education Facilities in Green Building Certification Criteria (학교시설 친환경인증 사례를 통한 에너지 평가항목에 대한 연구)

  • Kwon, Young-Cheol;Kwag, Moon-Geun;Choi, Chang-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.688-694
    • /
    • 2009
  • With the increase in the demand for sustainable and environmentally-friendly development, Green Building Certification System came into force in 2002, Evaluation parts of Green Building Certification System are divided into land use and transportation, energy, ecological environment, and indoor environment. Alloted point for the part of energy is larger than other part, thus we can say that this part is very important to increase the green building performance. This study aims to analyze the present condition of design and construction for the part of energy in the certificated green school building. Total 40 certificated school buildings were selected and average scoring rate of each item was evaluated. Key particular to be considered were suggested to improve the item of energy consumption.

Verification of the Entire Process Model through Green Remodeling Pilot Project (그린리모델링 실증 시범사업을 통한 프로세스의 전 과정에 대한 검토)

  • Jeong, Jin-Woo;Ju, Jung-Hoon;Lee, Keon-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.3
    • /
    • pp.37-45
    • /
    • 2018
  • The purpose of this study is to review all phases of the pilot project through the implementation of the Green Remodeling process. The Green Remodeling process was developed to facilitate anyone's ease of use. The Green Remodeling process consists of five phases : project, plan, design, construction, operation and maintenance. Each stage simulation was performed and the energy saving was predicted. Architects can easily obtain energy information of a building. In this study, we propose a green remodeling proposal plan through pilot project. Ultimately, the spread of green remodeling will greatly contribute to achieving the goal of reducing greenhouse gas emissions.

Optimization of Green Ammonia Production Facility Configuration in Australia for Import into Korea

  • Hyun-Chang Shin;Hak-Soo Mok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_1
    • /
    • pp.269-276
    • /
    • 2024
  • Many countries across the world are making efforts beyond reducing CO2 levels and declaring 'net zero,' which aims to cut greenhouse gas emissions to zero by not emitting any carbon or capturing carbon, by 2050. Hydrogen is considered a key energy source to achieve carbon neutrality goals. Korean companies are also interested in building overseas green ammonia production plants and importing hydrogen into Korea in the form of ammonia. Green hydrogen production uses renewable energy sources such as solar and wind power, but the variability of power production poses challenges in plant design. Therefore, optimization of the configuration of a green ammonia production plant using renewable energy is expected to contribute as basic information for securing the economic feasibility of green ammonia production.

Design Strategy for Green Residential Building in Solar Decathlon - Based on Case Study of Residential Building in Solar Decathlon

  • Yoon, Sung-Hoon
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.45-51
    • /
    • 2015
  • The Purpose of this study is to analyze the green design strategies in residential building, based on case study of Solar Decathlon in USA. This study could provide the basic reference data and theocratical foundation for finding new green design strategies and applicability of green design for korea. The Solar Decathlon is an green design competition that challenges collegiate teams to design, build, and operate the green residential building with optimal energy production and maximum efficiency. As a result of the analysis of this study, the green design strategy is identified and analyzed design issues related in energy, materials, and indoor/outdoor environment. Also, it is useful to find best green design strategy with more economical and environmental benefits presented by renewable energy and design solutions. This study is based on selected 18 green housings of Solar Decathlon from 2002 to 2013. This result is helpful to understand the green design strategies for green residential building's design of modern residential building, and expect future green residential building design approach.

A Study on the Improvement of New and Renewable Energy Certification Criteria in the Green Building Certification System (녹색건축 인증제도의 신·재생에너지 인증기준 개선에 관한 연구)

  • Lee, Mi-Ryeong;Park, Ji-Hye;Haan, Chan-Hoon;Tae, Choon-Seob
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.80-88
    • /
    • 2013
  • Deploying new and renewable energy should be encouraged due to scarce of natural resources and to reduce the $CO_2$ emission. Regarding the Green Building Certification System, '2.2.1 new and renewable energy use', and '2.3.1 carbon dioxide emission reductions' are related to new and renewable energy. Applying new and renewable energy can achieve the score in two criteria mentioned above and most of buildings get a perfect score in the green building certification system. So these criteria needs to be revised to have discrimination. In this study, supply rate of new and renewable energy of the buildings that have achieved Green Building Certification by E Green Building Certification Institute was analyzed. The improvement of assessment criteria related to new and renewable energy is proposed and could be applied to the revisions.

Comparative of Energy-Saving by Green Roof Type on Urban Office Building (도심 오피스건물의 옥상녹화 조성 유형별 건물에너지 절감 비교 연구)

  • Kim, Jeong-Ho;Kwon, Ki-Uk;Joo, Chang-Hun;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.23 no.8
    • /
    • pp.1437-1446
    • /
    • 2014
  • This study, the urban energy used office building green roof type composition of the target by analyze building energy reductions. Green roof is total 6 types(type A~F) were selected, EnergyPlus the energy simulation programs were used. Top floor of green roof types evaluation, the reduction of the cooling peak load type E(1.26%), type D(1.30%), type C(1.37%), type B(1.45%), type F(1.49%), and heating peak load is type D(1.32%), type E(1.40%), type C(1.47%), type F(1.69%), type B(2.13%) order. Annual cooling load of heating load is reduced more than about 1% effect. The heating load reduction ratio for a maximum of 9% respectively. Cooling peak load of the building energy performance evaluation of type F > type B > type C > type D > type E in the order and in the case of peak loads heating type B > type F > type D > type E>type C order. Annual total energy use reduction of 1.07 to 1.22% and earn, type B in the best good. In primary energy use reductions in the presence of a green roof were in the 4249~4876 kWh/yr. Annual $CO_2$ emissions reductions of unapplied type A were analyzed on average 469.78 kg.

Power Allocation Optimization and Green Energy Cooperation Strategy for Cellular Networks with Hybrid Energy Supplies

  • Wang, Lin;Zhang, Xing;Yang, Kun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4145-4164
    • /
    • 2016
  • Energy harvesting is an increasingly attractive source of power for cellular networks, and can be a promising solution for green networks. In this paper, we consider a cellular network with power beacons powering multiple mobile terminals with microwave power transfer in energy beamforming. In this network, the power beacons are powered by grid and renewable energy jointly. We adopt a dual-level control architecture, in which controllers collect information for a core controller, and the core controller has a real-time global view of the network. By implementing the water filling optimized power allocation strategy, the core controller optimizes the energy allocation among mobile terminals within the same cluster. In the proposed green energy cooperation paradigm, power beacons dynamically share their renewable energy by locally injecting/drawing renewable energy into/from other power beacons via the core controller. Then, we propose a new water filling optimized green energy cooperation management strategy, which jointly exploits water filling optimized power allocation strategy and green energy cooperation in cellular networks. Finally, we validate our works by simulations and show that the proposed water filling optimized green energy cooperation management strategy can achieve about 10% gains of MT's average rate and about 20% reduction of on-grid energy consumption.

Green Building Design Strategies for Multiplex Housing

  • Park, Won Ho;Ahn, Yong Han;Choi, Young-Oh
    • KIEAE Journal
    • /
    • v.16 no.4
    • /
    • pp.21-30
    • /
    • 2016
  • Purpose: Energy saving in the built facilities is getting important due to energy crisis. The Korea government has been implemented several energy and green building policies and practices. The both of government and industry also developed green building strategies ant technologies to reduce energy consumption and carbon emission. The purpose of this research is to identify applicable green building strategies and technologies for that can be cost effective and applicable to a multiplex house. Method: This research identified appropriate green building strategies from analysing green building strategies from G-SEED certified apartment projects and popular green building strategies. This study also adopted a survey research method to find out the applicable green building strategies for a multiplex housing. In addition, this research also conduct cost estimating to identify initial cost premium of green building strategies. Results: The research outcomes in this study guide a building owner to know about initial cost premiums of green building strategies and technologies and an architect and contractor to identify appropriate and cost effective green building strategies that can be applicable to a multiplex house.

A Study on Building Energy Demand for Design of Energy System on Green Home Apartment (그린홈 공동주택의 최적 에너지 공급시스템 설계를 위한 부하 예측 연구)

  • Park, Jae-Wan;Yoon, Jong-Ho;Kwak, Hee-Youl;Lee, Jae-Bum;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.24-31
    • /
    • 2013
  • More than 23% of total nation's energy is consumed by residential building and 57.2% of Korean people are living in apartment. This study was carried out to two kind of process. First, after selecting one standard apartment, our research team investigate realistic energy consumption. Second, using 3-dimension heat transfer tool(TRISCO RADICON) and building energy simulation tool(Visual DOE) As a result, amount of heating and hot-water energy is composed of above 80 percent in standard apartment. And, after applying high performance technologies to standard apartment, namely, after being green home apartment, total energy consumption is reduced by54.6 percent. Also, because of energy consumption characteristics of green home apartment, for making more high performance green home apartment, especially, we have to figure out effective method to reduce electric and hot water energy.