• Title/Summary/Keyword: green electronics

Search Result 389, Processing Time 0.028 seconds

Excitation Based Tunable Emissions from the Nanocrystalline $Ca_2Gd_8Si_6O_{26}$ : $Sm^{3+}/Tb^{3+}$ Phosphors for Novel Inorganic LEDs

  • Raju, G. Seeta Rama;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.156-156
    • /
    • 2011
  • Nanocrystalline $Ca_2Gd_8Si_6O_{26}$ (CGS) : $Sm^{3+}$ and CGS : $Tb^{3+}/Sm^{3+}$ phosphors were prepared by solvothermal reaction method for light emitting diode (LED) and field emission display (FED) applications. The XRD patterns of these phosphors confirmed their oxyapatite structure in the hexagonal lattice. The visible luminescence properties of these phosphors were investigated by exciting with ultraviolet (UV) or near-UV light and low voltage electron beam. The photoluminescence (PL) properties of $Ca_2Gd_8Si_6O_{26}$ (CGS) : $Sm^{3+}$ and CGS : $Tb^{3+}/Sm^{3+}$ phosphors were investigated as a function of $Sm^{3+}$ concentration. Cathodoluminescence (CL) properties were examined by changing the acceleration voltage. The CGS : $Sm^{3+}$ showed the dominant orange emission due to the $^4G_{5/2}{\rightarrow}^6H_{7/2}$ transition. The CGS : $Tb^{3+}/Sm^{3+}$ phosphor showed the green, white and orange emissions when excited with 275, 378, and 405 nm wavelengths, respectively. The chromaticity coordinates of these phosphors were comparable to or better than those of standard phosphors for LED or FED devices.

  • PDF

Single-pixel Autofocus with Plasmonic Nanostructures

  • Seok, Godeun;Choi, Seunghwan;Kim, Yunkyung
    • Current Optics and Photonics
    • /
    • v.4 no.5
    • /
    • pp.428-433
    • /
    • 2020
  • Recently, the on-chip autofocus (AF) function has become essential to the CMOS image sensor. An auto-focus usually operates using phase detection of the photocurrent difference from a pair of AF pixels that have focused or defocused. However, the phase-detection method requires a pair of AF pixels for comparison of readout. Therefore, the pixel variation may reduce AF performance. In this paper, we propose a color-selective AF pixel with a plasmonic nanostructure in a 0.9 μ㎡ pixel. The suggested AF pixel requires one pixel for AF function. The plasmonic nanostructure uses metal-insulator-metal (MIM) stack arrays instead of a color filter (CF). The color filters are formed at the subwavelength, and they transmit the specific wavelength of light according to the stack period and incident angles. For the optical analysis of the pixel, a finite-difference time-domain (FDTD) simulation was conducted. The analysis showed that the MIM stack arrays in the pixels perform as an AF pixel. As the primary metric of AF performance, the resulting AF contrasts are 1.8 for the red pixels, 1.6 for green, and 1.5 blue. Based on the simulation results, we confirmed the autofocusing performance of the MIM stack arrays.

Origin of Multiple Conductance Peaks in Single-Molecule Junction Experiments

  • Park, Min Kyu;Kim, Hu Sung;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.654-654
    • /
    • 2013
  • One of the most important yet unresolved problems in molecular electronics is the controversy over the number and nature of multiple conductance peaks in single-molecule junctions. Currently, there are three competing explanations of this observation: (1) manifestation of different molecule-electrode contact geometries, (2) formation of gauche defects within the molecular core, (3) involvement of different electrode surface orientations [1]. However, the exact origin of multiple conductance peaks is not yet fully understood, which indicates our incomplete understanding of the scientifically as well as techno-logically important organic-metal contacts. To theoretically resolve this problem, we previously applied a multiscale computational approach that combines force fields molecular dynamics (FF MD), density functional theory (DFT), and matrix Green's function (MGF) calculations [2] to a thermally fluctuating haxanedithiol (C6DT) molecule stretched between flat Au(111) electrodes, but could observe only a single conductance peak [3]. In this presentation, using DFT geometry optimizations and MGF calculations, we consider molecular junctions with more realistic molecule-metal contact conformations and Au(111) electrode surface directions. We also conduct DFT-based molecular dynamics for the highly stretched junction models to confirm our conclusion. We conclude that the S-Au coordination number should be the more dominant factor than the electrode surface orientation.

  • PDF

A Study on Corrosion Resistance and Electrical Surface Conductivity of an Electrodeposited Ni-W Thin Film (전해도금에 의한 Ni-W 합금의 내식성 및 표면 전도도 특성 연구)

  • Park, Je-Sik;Jeong, Goo-Jin;Kim, Young-Jun;Kim, Ki-Jae;Lee, Churl-Kyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.2
    • /
    • pp.68-73
    • /
    • 2011
  • A Ni-W thin-film was synthesized by electrodeposition, and its corrosion resistance and electrical surface conductivity were investigated. Amount of tungsten in the Ni-W thin-film increased linearly with current density during the electrodeposition, and crack-free and low-crystalline Ni-21 at.%W coating layer was obtained. Corrosion resistances of the Ni-W thin-films were examined with an anodic polarization method and a storage test in a strong sulfuric acid solution. As a result, the Ni-21 at.%W thin-film exhibited the greatest corrosion resistance, and maintained the electrical surface conductivity even after the severe corrosion test, which could be applicable as a surface treatment for advanced metallic bipolar plates in fuel cell or redox flow battery systems.

The computation of the torso surface potentials using the boundary element method (경계요소법을 이용한 트로소 표면전위의 계산)

  • 이경중;이세진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.8
    • /
    • pp.22-29
    • /
    • 1996
  • This study describes a method to find the torso surface potential based on the boundary element method. In order to find the torso surface potential, the governing equation was developed based on the green's second theorem. The boundary element method (BEM) which has a good computing capability in case of homogeneous and isotropic medium was applied to solve the equation. to validate the BEM, we considered a homogeneous sphere model which has an electrric dopole source inside. The results showed the good agreement between the analytic solution and the computed solution. In normal heart, the simulated torso surface isopotential maps are good agreement with that obtained form the ventricular excitation.

  • PDF

Fabrication of Superjunction Trench Gate Power MOSFETs Using BSG-Doped Deep Trench of p-Pillar

  • Kim, Sang Gi;Park, Hoon Soo;Na, Kyoung Il;Yoo, Seong Wook;Won, Jongil;Koo, Jin Gun;Chai, Sang Hoon;Park, Hyung-Moo;Yang, Yil Suk;Lee, Jin Ho
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.632-637
    • /
    • 2013
  • In this paper, we propose a superjunction trench gate MOSFET (SJ TGMOSFET) fabricated through a simple p-pillar forming process using deep trench and boron silicate glass doping process technology to reduce the process complexity. Throughout the various boron doping experiments, as well as the process simulations, we optimize the process conditions related with the p-pillar depth, lateral boron doping concentration, and diffusion temperature. Compared with a conventional TGMOSFET, the potential of the SJ TGMOSFET is more uniformly distributed and widely spread in the bulk region of the n-drift layer due to the trenched p-pillar. The measured breakdown voltage of the SJ TGMOSFET is at least 28% more than that of a conventional device.

A Study on Flicker Free LED Driver for Dimming MR16 Electronic Transformer (조광기용 MR16 안정기 호환 Flicker Free LED 구동회로 연구)

  • Kim, Taek-Woo;Hong, Sung-Soo;Yeom, Bong-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.327-331
    • /
    • 2014
  • LED(Light Emitting Diode) is a semiconductor device utilizing electroluminescent effect is a phenomenon in which a type of P-N junction diode, the light of short wavelength which a voltage is applied in the forward direction is released. LED is advantageous in reducing the energy as environmentally materials that can greatly reduce the carbon emissions, recent it has attracted attention IT(Information Technology) and GT(Green Technology) industry. In addition, there are advantages long life, high efficiency, and excellent response speed, LED have come into the spotlight as the illumination means to replace the existing fluorescent light and incandescent light bulb. When connecting to MR16 electronic transformer for existing LED driver circuit, due to malfunction of the dimmer and the electronic transformer, flicker occurs and linear dimming is not possible. Therefore, in this paper, we suggest an LED drive circuit there is no flicker with the corresponding dimming MR16 electronic transformer. Further, we explain the principles of the LED current control technique and the principle of the drive circuit of the LED, in order to validate the proposed circuit through prototyping and simulation.

Energy Maestro and Development Status of the DNA-oriented Energy-ICT Technology for Carbon Neutrality (에너지 거장과 탄소 중립을 위한 DNA(데이터, 네트워크, 인공지능) 중심 에너지ICT 기술 개발 현황)

  • Park, W.K.;Ku, T.Y.;Lee, I.W.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.1
    • /
    • pp.109-119
    • /
    • 2021
  • The Korean government recently announced a plan of the Carbon Neutral policy in addition to the Green New Deal of the Korean New Deal and the Renewable Energy 3020. The energy sector is entering the era of major transformation involving the expansion of decarbonization, decentralization, and digitalization. DNA-oriented ICT technology will be incorporated into the sector. Further, new energy industries and services are being realized via efficient and smart operation and by appropriately managing the energy-environment changes. Recently, ETRI presented a technology development map for 2035 comprising 12 new concepts in four major fields(personal, social, industrial and public) of national intelligence. This map includes the concept of "Energy Maestro" associated with the field of public intelligence for human sustainability. This paper briefly introduces this concept and ETRI's Energy-R&D status. Based on the domain knowledge and the experience acquired through the R&D, ETRI will lead to a new paradigm with respect to the creation of new energy services and industries via the incorporation of the new ICT technologies including AI and big-data into the energy sector.

Design and Implementation of Green Coastal Lighting System for Entrance to Coastal Pier

  • Jae-Kyung Lee;Jae-Hong Yim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • The hardware of an LED lighting control system for coastal lighting at coastal pier entrance consists of a power supply unit, an AVR control unit, a CLCD output unit, an LED control unit, a scenario selection switch unit, and an operation speed display unit. It is made of an 8-channel. The CPU used ATmega128 and the FET was used to control the current signal. To operate the CPU, DC 12V was converted to DC 5V using a regulator 7805. A heat sink was used to remove heat generated in the FET. By connecting the load LED module to the manufactured 8-channel LED lighting control system, the operation was confirmed through various production scenarios. In addition, a control system was designed to show the most suitable color for the atmosphere of the coastal pier according to the input value of temperature and illumination using a fuzzy control system. Computer simulation was then conducted. Results confirmed that fuzzy control did not need to store many data inputs due to characteristics of artificial intelligence and that it could efficiently represent many output values with simple fuzzy rules.

Structural and Electrical Properties of La0.7Sr0.3-xMgxMnO3 Ceramics with MgO Content (MgO 첨가에 따른 La0.7Sr0.3-xMgxMnO3 세라믹스의 구조적, 전기적 특성)

  • Hyun-Tae Kim;Jeong-Eun Lim;Byeong-Jun Park;Sam-Haeng Yi;Myung-Gyu Lee;Joo-Seok Park;Young-Gon Kim;Sung-Gap Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.275-279
    • /
    • 2023
  • La0.7Sr0.3-xMgxMnO3 (LSMMO) (x=0.05~0.20) specimens are fabricated by a solid phase sintering method, and the sintering temperature and time are 1,300℃ and 2 hours, respectively. The dependence of the crystalline structure according to the amount of Mg2+ contents is not observed, and all specimens show a polycrystalline rhombohedral crystal structure, the X-ray diffraction (110) peaks move to the high angle side with increasing the amount of Mg2+ contents. LSMMO specimens exhibit a granule-shaped microstructure with an average grain size of 1 ㎛ or less. Resistivity gradually decrease as the amount of Mg2+ contents increased. And in the La0.7Sr0.1Mg0.2MnO3 specimen, resistivity and B25/65-value are 36.7 Ω-cm and 394 K at room temperature, respectively. LSMMO specimens show a variable-range hopping (VRH) electrical conduction mechanism, and the negative temperature of coefficient of resistance (NTCR) is approximately 0.37~0.38%/℃.