• Title/Summary/Keyword: greedy access

Search Result 29, Processing Time 0.024 seconds

A Ranking Cleaning Policy for Embedded Flash File Systems (임베디드 플래시 파일시스템을 위한 순위별 지움 정책)

  • Kim, Jeong-Ki;Park, Sung-Min;Kim, Chae-Kyu
    • The KIPS Transactions:PartA
    • /
    • v.9A no.4
    • /
    • pp.399-404
    • /
    • 2002
  • Along the evolution of information and communication technologies, manufacturing embedded systems such as PDA (personal digital assistant), HPC (hand -held PC), settop box. and information appliance became realistic. And RTOS (real-time operating system) and filesystem have been played essential re]os within the embedded systems as well. For the filesystem of embedded systems, flash memory has been used extensively instead of traditional hard disk drives because of embedded system's requirements like portability, fast access time, and low power consumption. Other than these requirements, nonvolatile storage characteristic of flash memory is another reason for wide adoption in industry. However, there are some technical challenges to cope with to use the flash memory as an indispensable component of the embedded systems. These would be relatively slow cleaning time and the limited number of times to write-and-clean. In this paper, a new cleaning policy is proposed to overcome the problems mentioned above and relevant performance comparison results will be provided. Ranking cleaning policy(RCP) decides when and where to clean within the flash memory considering the cost of cleaning and the number of times of cleaning. This method will maximize not only the lifetime of flash memory but also the performance of access time and manageability. As a result of performance comparison, RCP has showed about 10 ~ 50% of performance evolution compared to traditional policies, Greedy and Cost-benefit methods, by write throughputs.

A Data Scheduling Method for Minimizing User Access Time in Uniform Wireless Broadcasting (균등 무선 방송에서 사용자 접근 시간 최소화를 위한 데이터 스케쥴링 기법)

  • Jeong, Yeon-Don;Kim, Myeong-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.9
    • /
    • pp.1085-1094
    • /
    • 1999
  • 이동 분산 환경에서는 무선 데이타 전송 기법을 통하여 사용자들에게 다양한 정보들을 전달하게 된다. 본 논문은 균등 무선 데이타 방송 환경에서, 빠른 시간에 방송데이타를 접근할 수 있는 방법에 대하여 기술한다. 이를 위하여 무선 방송 데이타의 스케쥴링 문제를 정의하고, 어떤 질의가 접근하는 데이타들의 응집 정도를 나타내는 `질의 거리(Query Distance: QD)'라는 측정 기준을 제시한다. 제안한 질의 거리를 사용하여 각 질의의 우선 순위에 따라 해당 질의가 접근하는 데이타 집합을 방송 스케쥴에 추가하면서 스케쥴을 구성하는 데이타 스케쥴링 기법을 제시한다. 데이타 집합의 스케쥴 구성 과정에서 우선 순위가 높은 질의의 질의 거리를 최소화하면서 낮은 우선 순위 질의들의 질의 거리를 줄이는 스케쥴 확장 규칙들을 사용한다. 예를 이용하여 제안하는 방법에 대하여 설명한 후, 실험을 통해 제안한 방법의 성능을 평가한다.Abstract In mobile distributed systems the data on the air can be accessed by a lot of clients. This paper describes the way clients access the broadcast data in short latency in uniform wireless broadcasting environment. We define the problem of wireless data scheduling and propose a measure, named Query Distance(QD), which represents the coherence degree of data set accessed by a query. By using the measure, we give a data scheduling method that constructs the broadcast schedule by appending each query's data set in greedy way. When constructing the schedule, we use schedule expansion rules that reduce the QD's of lower-frequency queries while minimizing the QD's of the higher-frequency ones. With the use of examples we illustrate the mechanism of the proposed method and we test the performance of our method.

An Advanced Adaptive Garbage Collection Policy by Considering the Operation Characteristics (연산 특성을 고려한 향상된 적응적 가비지 컬렉션 정책)

  • Park, Song-Hwa;Lee, Jung-Hoon;Lee, Won-Oh;Kim, Hyun-Woo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.5
    • /
    • pp.269-277
    • /
    • 2018
  • NAND flash memory has widely been used because of non-volatility, low power consumption and fast access time. However, it suffers from inability to provide update-in-place and the erase cycle is limited. The unit of read/write operation is a page and the unit of erase operation is a block. Moreover erase operation is slower than other operations. We proposed the Adaptive Garbage Collection (called "AGC") policy which focuses on not only reducing garbage collection process time for real-time guarantee but also wear-leveling for a flash memory lifetime. The AGC performs better than Cost-benefit policy and Greedy policy. But the AGC does not consider the operation characteristics. So we proposed the Advanced Adaptive Garbage Collection (called "A-AGC") policy which considers the page write operation count and block erase operation count. The A-AGC reduces the write operations by considering the data update frequency and update data size. Also, it reduces the erase operations by considering the file fragmentation. We implemented the A-AGC policy and measured the performance compared with the AGC policy. Simulation results show that the A-AGC policy performs better than AGC, specially for append operation.

Measurement-based AP Deployment Mechanism for Fingerprint-based Indoor Location Systems

  • Li, Dong;Yan, Yan;Zhang, Baoxian;Li, Cheng;Xu, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1611-1629
    • /
    • 2016
  • Recently, deploying WiFi access points (APs) for facilitating indoor localization has attracted increasing attention. However, most existing mechanisms in this aspect are typically simulation based and further they did not consider how to jointly utilize pre-existing APs in target environment and newly deployed APs for achieving high localization performance. In this paper, we propose a measurement-based AP deployment mechanism (MAPD) for placing APs in target indoor environment for assisting fingerprint based indoor localization. In the mechanism design, MAPD takes full consideration of pre-existing APs to assist the selection of good candidate positions for deploying new APs. For this purpose, we first choose a number of candidate positions with low location accuracy on a radio map calibrated using the pre-existing APs and then use over-deployment and on-site measurement to determine the actual positions for AP deployment. MAPD uses minimal mean location error and progressive greedy search for actual AP position selection. Experimental results demonstrate that MAPD can largely reduce the localization error as compared with existing work.

Improved AP Deployment Optimization Scheme Based on Multi-objective Particle Swarm Optimization Algorithm

  • Kong, Zhengyu;Wu, Duanpo;Jin, Xinyu;Cen, Shuwei;Dong, Fang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1568-1589
    • /
    • 2021
  • Deployment of access point (AP) is a problem that must be considered in network planning. However, this problem is usually a NP-hard problem which is difficult to directly reach optimal solution. Thus, improved AP deployment optimization scheme based on swarm intelligence algorithm is proposed to research on this problem. First, the scheme estimates the number of APs. Second, the multi-objective particle swarm optimization (MOPSO) algorithm is used to optimize the location and transmit power of APs. Finally, the greedy algorithm is used to remove the redundant APs. Comparing with multi-objective whale swarm optimization algorithm (MOWOA), particle swarm optimization (PSO) and grey wolf optimization (GWO), the proposed deployment scheme can reduce AP's transmit power and improves energy efficiency under different numbers of users. From the experimental results, the proposed deployment scheme can reduce transmit power about 2%-7% and increase energy efficiency about 2%-25%, comparing with MOWOA. In addition, the proposed deployment scheme can reduce transmit power at most 50% and increase energy efficiency at most 200%, comparing with PSO and GWO.

Garbage Collection Method using Proxy Block considering Index Data Structure based on Flash Memory (플래시 메모리 기반 인덱스 구조에서 대리블록 이용한 가비지 컬렉션 기법)

  • Kim, Seon Hwan;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.6
    • /
    • pp.1-11
    • /
    • 2015
  • Recently, NAND flash memories are used for storage devices because of fast access speed and low-power. However, applications of FTL on low power computing devices lead to heavy workloads which result in a memory requirement and an implementation overhead. Consequently, studies of B+-Tree on embedded devices without the FTL have been proposed. The studies of B+-Tree are optimized for performance of inserting and updating records, considering to disadvantages of the NAND flash memory that it can not support in-place update. However, if a general garbage collection method is applied to the previous studies of B+-Tree, a performance of the B+-Tree is reduced, because it generates a rearrangement of the B+-Tree by changing of page positions on the NAND flash memory. Therefor, we propose a novel garbage collection method which can apply to the B+-Tree based on the NAND flash memory without the FTL. The proposed garbage collection method does not generate a rearrangement of the B+-Tree by using a block information table and a proxy block. We implemented the B+-Tree and ${\mu}$-Tree with the proposed garbage collection on physical devices with the NAND flash memory. In experiment results, the proposed garbage collection scheme compared to greedy algorithm garbage collection scheme increased the number of inserted keys by up to about 73% on B+-Tree and decreased elapsed time of garbage collection by up to about 39% on ${\mu}$-Tree.

Performance Modelling of Adaptive VANET with Enhanced Priority Scheme

  • Lim, Joanne Mun-Yee;Chang, YoongChoon;Alias, MohamadYusoff;Loo, Jonathan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1337-1358
    • /
    • 2015
  • In this paper, we present an analytical and simulated study on the performance of adaptive vehicular ad hoc networks (VANET) priority based on Transmission Distance Reliability Range (TDRR) and data type. VANET topology changes rapidly due to its inherent nature of high mobility nodes and unpredictable environments. Therefore, nodes in VANET must be able to adapt to the ever changing environment and optimize parameters to enhance performance. However, there is a lack of adaptability in the current VANET scheme. Existing VANET IEEE802.11p's Enhanced Distributed Channel Access; EDCA assigns priority solely based on data type. In this paper, we propose a new priority scheme which utilizes Markov model to perform TDRR prediction and assign priorities based on the proposed Markov TDRR Prediction with Enhanced Priority VANET Scheme (MarPVS). Subsequently, we performed an analytical study on MarPVS performance modeling. In particular, considering five different priority levels defined in MarPVS, we derived the probability of successful transmission, the number of low priority messages in back off process and concurrent low priority transmission. Finally, the results are used to derive the average transmission delay for data types defined in MarPVS. Numerical results are provided along with simulation results which confirm the accuracy of the proposed analysis. Simulation results demonstrate that the proposed MarPVS results in lower transmission latency and higher packet success rate in comparison with the default IEEE802.11p scheme and greedy scheduler scheme.

A Adaptive Garbage Collection Policy for Flash-Memory Storage System in Embedded Systems (실시간 시스템에서의 플래시 메모리 저장 장치를 위한 적응적 가비지 컬렉션 정책)

  • Park, Song-Hwa;Lee, Jung-Hoon;Lee, Won-Oh;Kim, Hee-Earn
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.3
    • /
    • pp.121-130
    • /
    • 2017
  • NAND flash memory has advantages of non-volatility, little power consumption and fast access time. However, it suffers from inability that does not provide to update-in-place and the erase cycle is limited. Moreover, the unit of read/write operation is a page and the unit of erase operation is a block. Therefore, erase operation is slower than other operations. The AGC, the proposed garbage collection policy focuses on not only garbage collection time reduction for real-time guarantee but also wear-leveling for a flash memory lifetime. In order to achieve above goals, we define three garbage collection operating modes: Fast Mode, Smart Mode, and Wear-leveling Mode. The proposed policy decides the garbage collection mode depending on system CPU usage rate. Fast Mode selects the dirtiest block as victim block to minimize the erase operation time. However, Smart Mode selects the victim block by reflecting the invalid page number and block erase count to minimizing the erase operation time and deviation of block erase count. Wear-leveling Mode operates similar to Smart Mode and it makes groups and relocates the pages which has the similar update time. We implemented the proposed policy and measured the performance compare with the existing policies. Simulation results show that the proposed policy performs better than Cost-benefit policy with the 55% reduction in the operation time. Also, it performs better than Greedy policy with the 87% reduction in the deviation of erase count. Most of all, the proposed policy works adaptively according to the CPU usage rate, and guarantees the real-time performance of the system.

Joint Mode Selection and Resource Allocation for Mobile Relay-Aided Device-to-Device Communication

  • Tang, Rui;Zhao, Jihong;Qu, Hua;Zhu, Zhengcang;Zhang, Yanpeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.950-975
    • /
    • 2016
  • Device-to-Device (D2D) communication underlaying cellular networks is a promising add-on component for future radio communication systems. It provides more access opportunities for local device pairs and enhances system throughput (ST), especially when mobile relays (MR) are further enabled to facilitate D2D links when the channel condition of their desired links is unfavorable. However, mutual interference is inevitable due to spectral reuse, and moreover, selecting a suitable transmission mode to benefit the correlated resource allocation (RA) is another difficult problem. We aim to optimize ST of the hybrid system via joint consideration of mode selection (MS) and RA, which includes admission control (AC), power control (PC), channel assignment (CA) and relay selection (RS). However, the original problem is generally NP-hard; therefore, we decompose it into two parts where a hierarchical structure exists: (i) PC is mode-dependent, but its optimality can be perfectly addressed for any given mode with additional AC design to achieve individual quality-of-service requirements. (ii) Based on that optimality, the joint design of MS, CA and RS can be viewed from the graph perspective and transferred into the maximum weighted independent set problem, which is then approximated by our greedy algorithm in polynomial-time. Thanks to the numerical results, we elucidate the efficacy of our mechanism and observe a resulting gain in MR-aided D2D communication.