• Title/Summary/Keyword: great soil group

Search Result 32, Processing Time 0.02 seconds

Spatial Distribution of Major Soil Types in Korea and an Assessment of Soil Predictability Using Soil Forming Factors (한국 주요 토양유형의 공간적 분포와 토양형성요인을 이용한 예측가능성 평가)

  • Park, Soo-Jin;Sonn, Yeon-Kyu;Hong, Suk-Young;Park, Chan-Won;Zhang, Yong-Seon
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.1
    • /
    • pp.95-118
    • /
    • 2010
  • This study aims to investigate the spatial distribution of major soil types in Korea, and to assess the ability to predict soil distribution using environmental variables. A classification tree method was used to assess soil predictability. While the great soil groups can give more intuitive understandings on their spatial distributions, its predictability using environmental factors is much lower than that of the great groups. The most important factor to determine the spatial distribution of major soil types is the geomorphological characteristic of Korea that shows distinctive morphological difference between mountains and plains. Spatial distribution of climatic variables and catenary soil sequence along slopes play additional roles in determining the distribution of soil types. The classification tree models resulted in 35-75% of prediction accuracy, depends on the combination of different environmental variables brought in the models. While geomorphological variables are the best predictors for the great groups, climatic variables perform better for the great soil groups.

Australian Soil Classification: an Review

  • Hyun, Byung-Keun;Sonn, Yeon-Kyu;Cho, Hyun-Jun;Jung, Kangho;Choi, Jung-won;Jung, Sug-Jae;Kwak, Woo-Ri;Kim, Woon-Sun;Hong, Se-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.93-114
    • /
    • 2016
  • As a means of improving Korean Soil Classification System, we have reviewed Australian Soil Classification System by comparing Soil Taxonomy and FAO/WRB Classification System. Australian Soil Classification System is composed of 14 of Order, 87 of Sub-order, 556 of Great-group, 2,451 of Sub-group, and 7,276 of Family. Interestingly, soil order has the Anthroposols which is not classified with Soil Taxonomy, and the classification for some of soils is based on soil texture abruption horizon and soil structure. Seven of 14 soil orders are classified with an old version based on soil color rather than morphological characteristics. The distribution scale of Australian soil order is the largest in Tenosols, and followed by Kandosols, Rudosols, Sodosols and Vertisols in Australia.

Characteristics of Skin Friction on Compression Loaded Group Piles (압축하중을 받는 무리말뚝의 주면지지력 특성)

  • Ahn Byung-Chul;Lee Jun-Dae
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.95-100
    • /
    • 2004
  • H-pile can be more easily driven than pipe pile by pile driver and shows high skin friction and plugging effect. And lately It is well grown that the high strength H-pile has been widely used f3r pile foundations. To compare the skin frictions of H piles under different density soil conditions, this paper presents results of a series of model tests on vertically loaded group piles. Model piles made of steel embedded in weathered granite soil were used in this study. Pile arrangements $(2\times2,\;3\tunes3)$, pile space(2D, 4D, 6D), and soil density$(D_r=40\%,\;80\%)$ were tested. The main results obtained from the model tests can be summarized as follows. The series of tests found that compression load for group piles increases as number of piles increase and piles space ratic decrease to $D_r=40\%$ of soil density. The analysis also found that the theoretical value of skin friction for group piles is greater than practical value as piles space ratio increases to $D_r=40\%$ of soil density. Piles showed the greatest difference of the skin friction in case that the pile space ratio(S/D) is 6. The theoretical value by Meyerhof and DM-7 showed 1.83 times and 1.32 times respectively as great as practical value in case of S/D=6 and $2\times2$.

Habitat Characteristics of Saussurea chabyoungsanica (자병취의 생육지 특성)

  • Oh, Young-Ju;Paik, Weon-Ki;Lee, Woo-Chul
    • The Korean Journal of Ecology
    • /
    • v.25 no.3 s.107
    • /
    • pp.145-152
    • /
    • 2002
  • Saussurea chabyoungsanica was recorded in new species by Lim Hyoung Tak in 1997. In order to understand the entity of new species, we investigated the new distribution sites, vegetation structure and soil environmental factors. Additionally discovered distribution sites of S. chabyoungsanica were Manduckbong, Mt. Sukbyoung, Mt. Duckhang, and Sukgaejae, which were located on ridge of the Taebaek Mountains. Those sites are typical limestone zones of Korea and among them Sukgaejae belongs to lower great limestone area and Manduckbong, Mt. Sukbyoung and Mt. Duckhang belong to upper great limestone area. According to the result of phytosociological study, plant communities of S. chabyoungsanica were classified by 1 Community group, 4 Communities and 2 Subcommunities; Carex humilis var. nana-Saussurea chabyoungsanica Community group in wide sense Quercus mongolica Community group, Lespedeza maximowiczii-Saussurea chabyounsanica Community, Galium kinuta-Saussurea chabyoungsanica Community, Salvia chanryonica-Saussurea chabyoungsanica Community, Zabelia coreana-Saussurea chabyoungsanica Community. Environmental factor analysis of habitat showed that the distribution site of S. chabyoungsanica was ridge of North aspect and displayed pH $7{\sim}8$ typical of limestone. Soil moisture content was high, whereas organic matter content was low. Considering its high occurrence in sites of $1{\sim}10cm$ in soil depth, and of $30{\sim}45%$ in relative light intensity, major distribution sites were outcrops and boundaries between shrubland and forest. After community division by vegetation structure in habitat of S. chabyoungsanica, we investigated characters of soil environment by community. As a result of PCA analysis of soil sample by community, it was possible to divide community by characters of soil environmental factor. The cumulative value of contribution rate represented in second dimension space was 73% and the major factors for that value were soil texture, organic matter content and field capacity.

Habitat Characteristics of Saussurea chabyoungsanica (자병취의 생육지 특성)

  • 백원기;오영주;이우철
    • The Korean Journal of Ecology
    • /
    • v.25 no.2
    • /
    • pp.75-82
    • /
    • 2002
  • Saussurea chabyoungsanica was recorded in new species by Lim Hyoung Tak in 1997. In order to understand the entity of new species, we investigated the new distribution sites, vegetation structure and soil environmental factors. Additionally discovered distribution sites of S. chabyoungsanica were Manduckbong, Mt. Sukbyoung, Mt. Duckhang, and Sukgaejae, which were located on ridge of the Taebaek mountains. Those sites are typical limestone zones of Korea and among them Sukgaejae belongs to lower great limestone area and Manduckbong, Mt. Sukbyoung and Mt. Duckhang belong to uper great limestone area. According to the result of phytosociological study, plant communities of S. chabyoungsanica were classified by 1 Community group, 4 Communities and 2 Subcommunities; Carex humilis var. nana - Saussurea chabyoungsanica Community group in wide sense Quercus mongolica Community group, Lespedeza maximowiczii- Saussurea chabyoungsanica Community, Galium kinuta - Saussurea chabyongsanica Community, Saliva chanryonica - Saussurea chabyoungsanica Community, Zabelia coreana - Saussurea chabyoungsanica Community. Environmental factor analysis of habitat showed that the distribution site of S. chabyoungsanica was ridge of North aspect and displayed pH 7∼8 typical of limestone. Soil moisture content was high, whereas organic matter content was low. Considering its high occurrence in sites of 1∼10cm in soil depth, and of 30∼45% in relative light intensity, major distribution sites were outcrops and boundaries between shrubland and forest. After community division by vegetation structure in habitat of S. chabyoungsanica, we investigated characters of soil environment by community. As a result of PCA analysis of soil sample by community, it was possible to divide community by characters of soil environmental factor. The cumulative value of contribution rate represented in second dimension space was 73% and the major factors for that value were soil texture, organic matter content and field capacity.

Monitoring of Bacterial Community in a Coniferous Forest Soil After a Wildfire

  • Kim Ok-Sun;Yoo Jae-Jun;Lee Dong-Hun;Ahn Tae-Seok;Song Hong-Gyu
    • Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.278-284
    • /
    • 2004
  • Changes in the soil bacterial community of a coniferous forest were analyzed to assess microbial responses to wildfire. Soil samples were collected from three different depths in lightly and severely burned areas, as well as a nearby unburned control area. Direct bacterial counts ranged from $3.3­22.6\times10^8\;cells/(g{\cdot}soil).$ In surface soil, direct bacterial counts of unburned soil exhibited a great degree of fluctuation. Those in lightly burned soil changed less, but no significant variation was observed in the severely burned soil. The fluctuations of direct bacterial count were less in the middle and deep soil lay­ers. The structure of the bacterial community was analyzed via the fluorescent in situ hybridization method. The number of bacteria detected with the eubacteria-targeted probe out of the direct bacterial count varied from $30.3\;to\;84.7\%,$ and these ratios were generally higher in the burned soils than in the unburned control soils. In the surface unburned soil, the ratios of $\alpha,\;\beta\;and\;gamma-proteobacteria,$ Cytoph­aga-Flavobacterium group, and other eubacteria groups to total eubacteria were 9.9, 10.6, 15.5, 9.0, and $55.0\%,$ respectively, and these ratios were relatively stable. The ratios of $\alpha,\;\beta\;and\;gamma-proteobacteria,$ and Cytophaga-Flavobacterium group to total eubacteria increased immediately after the wildfire, and the other eubacterial proportions decreased in the surface and middle layer soils. By way of contrast, the composition of the 5 groups of eubacteria in the subsurface soil exhibited no significant fluctuations dur­ing the entire period. The total bacterial population and bacterial community structure disturbed by wildfire soon began to recover, and original levels seemed to be restored 3 months after the wildfire.

Mechanical characteristics + differential settlement of CFG pile and cement-soil compacted pile about composite foundation under train load

  • Cheng, Xuansheng;Liu, Gongning;Gong, Lijun;Zhou, Xinhai;Shi, Baozhen
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.155-164
    • /
    • 2020
  • In recent years, the stability, safety and comfort of trains has received increased attention. The mechanical characteristics and differential settlement of the foundation are the main problems studied in high-speed railway research. The mechanical characteristics and differential settlement of the foundation are greatly affected by the ground treatment. Additionally, the effects of train load and earthquakes have a great impact. The dynamic action of the train will increase the vibration acceleration of the foundation and increase the cumulative deformation, and the earthquake action will affect the stability of the substructure. Earthquakes have an important practical significance for the dynamic analysis of the railway operation stage; therefore, considering the impact of earthquakes on the railway substructure stability has engineering significance. In this paper, finite element model of the CFG (Cement Fly-ash Gravel) pile + cement-soil compacted pile about composite foundation is established, and manual numerical incentive method is selected as the simulation principle. The mechanical characteristics and differential settlement of CFG pile + cement-soil compacted pile about composite foundation under train load are studied. The results show: under the train load, the neutral point of the side friction about CFG pile is located at nearly 7/8 of the pile length; the vertical dynamic stress-time history curves of the cement-soil compacted pile, CFG pile and soil between piles are all regular serrated shape, the vertical dynamic stress of CFG pile changes greatly, but the vertical dynamic stress of cement-soil compacted pile and soil between piles does not change much; the vertical displacement of CFG pile, cement-soil compacted pile and soil between piles change very little.

A Brief Review of Soil Systematics in Germany (독일 토양분류체계 소개)

  • Kim, Rog-Young;Sung, Jwa-Kyung;Kim, Seok-Cheol;Jang, Byoung-Choon;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.113-118
    • /
    • 2010
  • Due to diverse soil-forming environments and different purposes of the soil classification, numerous soil classification systems have been developed worldwide. The World Reference Base for Soil Resources (WRB) and the Soil Taxonomy of the United States are well-known in Korea. However, the German Soil Systematics based on somewhat different principles from the two former systems is little-known. The objective of this paper is therefore to give a short overview of the principles of the German Soil Systematics. The German Soil Systematics consists of a six-level hierarchical structure which comprises soil divisions, soil classes, soil types, soil subtypes, soil varieties, and soil subvarieties. Soils in Germany are firstly classified into one of four soil divisions according to the soil moist regime: terrestrial soils, semi-terrestrial soils, semi-subhydric/subhydric soils, and peats. Terrestrial soils are subdivided into 13 soil classes based on the stage of soil formation and the horizon differentiation. Semi-terrestrial soils are differentiated into four classes regarding the source of soil moist: groundwater, freshwater, saltwater, and seaside. Semi-subhydric/subhydric soils are subdivided into two classes: semi-subhydric and subhydric soils. Peats are classified into two classes of natural and anthropogenic origins. Classes can be compared to orders of the U.S. Taxonomy. Classes are subdivided into 29 soil types with regard to soil forming-processes for terrestrial soils, into 17 types with regard to the soil formation for semi-terrestrial soils, into five types with regard to the content of organic matter for semi-subhydric/subhydric soils, and also into five types with regard to peat-forming processes for peats. The soil mapping units in Germany are types, which can be additionally subdivided into ca. 220 subtypes, several thousands of varieties and subvarieties using detailed nuances of morphologic features of soil profile. Soil types can be compared to great groups of the U.S. Taxonomy.

The inoculation effect of R. japonicum on the nodulation and nitrogen fixation activity in Glycine max with the different kinds of soil. (토양별 근류균접종이 대두의 근류형성 및 질소개정활성에 미치는 영향)

  • Yoo, Ik-Dong;Kim, Chang-Jin;Kim, Sung-Hoon;Lee, Yoon;Min, Tae-Ik
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.2
    • /
    • pp.187-192
    • /
    • 1986
  • The inoculation effect of the highly nitrogen fixing strains of R. japonicum were tested in the 3 kinds of soil with different cultural history onto Gycine max cv. Jang-yeob. The nodulation and nitrogen fixation activity in 3 test soils all showed the great increase in inoculated group compared to the non-inoculated group. The plant dry weight of the in-oculated groups were increased about 10% than that of the non-inoculated groups. The numerical index of the increase in total nitrogen fixation activity were 238% in the pre-cultivated, 266% in the immatured and 157% in the matured soil and these results suggested the clear effect of inoculation. Among the strains tested, R. japonicum R214 and Rl38 showed the excellent inoculation effect.

  • PDF

Analysis of Higher Temporal Moments for Breakthrough Curves of Volatile Organic Compounds in Unsaturated Soil (불포화 토양에서 유동하는 가스상 Volatile Organic Compounds의 출현곡선에 대한 고차 Temporal Moment의 분석)

  • Kim, Heon-Ki
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.60-69
    • /
    • 2007
  • Understanding the behavior of gas phase VOCs (volatile organic compounds) in unsaturated soils is of a great environmental importance for public health concerns. Moment analysis for the breakthrough curves (BTCs) during transport of chemicals in porous media was known to be a useful tool to evaluate the velocity, spreadness, and the skewness of the plume of the chemicals. In this study, the temporal moments of the BTCs of a group of VOCs were analyzed for the gaseous transport in an unsaturated soil. BTCs were measured using lab-scale column experiments for four different VOCs at the water saturation range of 0.04-0.46, and for eleven VOCs at a water saturation of 0.21. The central second and third moments of the VOCs were compared with the water saturation and the first moment. It was found that both central second and third moments increased with the first moment. The central third moment was, however, found to be more sensitive to the first moment.