• Title/Summary/Keyword: gray mold rot.

Search Result 63, Processing Time 0.029 seconds

Control of Fungal Diseases with Antagonistic Bacteria, Bacillus sp. AC-1

  • Park, Yong-Chul-
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1994.06a
    • /
    • pp.50-61
    • /
    • 1994
  • Biological control of important fungal diseases such as Phytophthora blight of red pepper, gary mold rot of vegetables, and powdery mildew of many crops was attempted using an antagonistic bacterium, Bacillus sp. AC-1 in greenhouses and fields. The antagonistic bacterium isolated from the rhizosphere soils of healthy red pepper plant was very effective in the inhibition of mycelial growth of plant pathogenic fungi in vitro including Phytophthora capsici, Rhizoctonia solani, Pyricularia oryzae, Botrytis cinerea, Valsa mali, Fusarium oxysporum, Pythium ultimum, Alternari mali, Helminthosporium oryzae, and Colletotrichum gloeosporioides. Culture filtrate of antagonistic Bacillus sp. AC-1 applied to pot soils infested with Phytophthora capsici suppressed the disease occurrence better than metalaxyl application did until 37 days after treatment in greenhouse tests. Treatments of the bacterial suspension on red pepper plants also reduced the incidence of Phytophthora blight in greenhouse tests. In farmers' commercial production fields, however, the controlling efficacy of the antagonistic bacteria was variable depending on field locations. Gray mold rot of chinese chives and lettuce caused by Botrytis cinerea was also controlled effectively in field tests by the application of Bacillus sp. AC-1 with control values of 79.7% and 72.8%, respectively. Spraying of the bacterial suspension inhibited development of powdery mildew of many crops such as cucumber, tobacco, melon, and rose effectively in greenhouse and field tests. The control efficacy of the bacterial suspension was almost same as that of Fenarimol used as a chemical standard. Further experiments for developing a commercial product from the antagonistic bacteria and for elucidating antagonistic mechanism against plant pathogenic fungi are in progress.

  • PDF

Forecasting the Pepper Gray Mold Rot to Predict the Initial Infection by Botrytis cinerea in Greenhouse Conditions

  • Park, Seon-Hee;Lee, Joon-Taek;Chung, Sung-Ok;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.15 no.4
    • /
    • pp.158-161
    • /
    • 1999
  • We determined threshold environmental factros to initiate infection of pepper plants by Botrytis cinerea, a fungal pathogen of pepper gray mold, in two greenhouse conditions. A new efficient spore-trapping method was developed to estimate population density of airborne conidia in the greenhouses, and spore release was measured using a Kerssies' selective medium. At a given day, spores were released greater during daytime (mostly from 7:30 am to 10:30 am and at 4:30 pm) than nighttime. Diurnal and nocturnal temperatures in the greenhouse-1 were about $25^{\circ}$ and $17^{\circ}$,and relative humidity was 100% for prolonged 24 h due to rain on December 17, 1997. Population density of air-borne conidia was 3.0$\times$103 conidia/ $0.5\textrm{m}^3$ after two days, and the initial infection occurred in ten days. During the same period of time in the greenhouse-2, diurnal temperature was about $25^{\circ}$ and nocturnal temperature was below $15^{\circ}$, and population density of air-borne conidia was 104 conidia/ $0.5\textrm{m}^3$. Under these conditions, the initial infection started in three days. This indicates that the early infection occurs under which diurnal temperature is approximately $25^{\circ}$, nocturnal temperature is maintained below $15^{\circ}$, and population density of air-borne conidia is 104 conidia/ $0.5\textrm{m}^3$ at saturated relative humidity condition.

  • PDF

Gray Mold Rot on Fruit of Cucumis melo var. reticulatus Caused by Botrytis cinerea (Botrytis cinerea에 의한 멜론 잿빛곰팡이병)

  • Kwon, Jin-Hyeuk;Kang, Soo-Woong;Son, Kyeng-Ae;Bae, Dong-Won;Park, Chang-Seuk
    • The Korean Journal of Mycology
    • /
    • v.27 no.4 s.91
    • /
    • pp.280-282
    • /
    • 1999
  • A new disease on mask melon grown under plastic film houses was found in Namhae area in May of 1999. Gray to dark brown mold were grown on the surface of matured fruits and infected inside tissues were discolored and rotten. Basal part of the fruit and blossom-end were frequently infected and colonized by fungi. About 2.2% of matured fruits were infected in the surveyed plastic film houses. The causal organism was isolated from the lesion and identified as Botrytis cinerea. The conidia in mass were hyaline or gray, 1-celled, mostly ellipsoid or ovoid and sized $8.8{\sim}21.2{\times}6.5{\sim}13.1\;{\mu}m$. Hyaline or pigmented conidiophores were tall, slender and determinated and, sometimes branched irregularly in upper part. Enlarged or rounded apical cells bear conidial cluster and sized $18.4{\sim}81.1{\times}4.3{\sim}11.4\;{\mu}m$. Optimum temperature for mycelial growth was recorded at $15{\sim}25^{\circ}C$. This is the first report on gray mold of melon caused by Botrytis cineria in Korea.

  • PDF

Isolation and Identification of Antagonistic Microorganisms for Biological Control to Major Diseases of Apple Tree(Malus domestica Borkh) (사과 주요 병해 방제를 위한 길항미생물 분리 및 동정)

  • 박흥섭;조정일
    • Korean Journal of Organic Agriculture
    • /
    • v.5 no.1
    • /
    • pp.137-147
    • /
    • 1996
  • For the purpose of acquiring microbial agents that can be utilized to biologically control the major airborne diseases to apple trees, such as canker(Botryosphaeria dothidea), bitter rot(Glomerella cingulata), alternaria leaf spot(Alternaria mali), root rot(rosellinia necatrix), canker(Valsa ceratosperma) and gray mold rot(Botrytis cinerea), the effective microorgaisms were isolated, tested for antagonistic activity to the pathogens causing major diseases to apple trees and identifed. Screening of more than 5,000 species of microorganisms collected in nature for them antagonistic action to the pathogens causing 5 major diseases to apple trees resulted in selection of effective species. Out of the 11 species, one species designated as CAP134 demonstrated outstanding activity. The bacterial strain, CAP134 exerted antagonistic efficiency of 57% on an isolated strain and 40% on a donated strain of Botryosphaeria dothidea., 52% on an isolated strain and 46% on a purchased strain of Alternaria mali, 60% on Valsa ceratosperma 25% on Glomerella cingulata, and 64% Rosellinia necatrix. The CAP134 was identified as a bacterial strain to Bacillus subtilis ATCC 6633 based on morephology, culture conditions, and physio-biochemical characteristics.

  • PDF

Isolation and Characterization of Burkholderia cepacia strain YJK2, Antagonistic Microorganism of Paprika Pathogens (파프리카 병원균들에 대한 길항미생물, Burkholderia cepacia strain YJK2의 분리 및 특성)

  • Yang, Soo-Jeong;Kim, Hyung-Moo;Ju, Ho-Jong
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.1
    • /
    • pp.133-148
    • /
    • 2015
  • Although several adverse effects have been increased in recent years, synthetic agro-chemicals have been widely used to control diseases on paprika. This research was conducted to isolate and to characterize the antagonistic microorganism to control major paprika diseases, gray mold rot, fruit and stem rot, phytophthora blight, sclerotium rot, and wilt disease. Analysis of the fatty acid and analysis of the 16S rDNA gene sequence revealed that YKJ2 isolated in this research belongs to a group of Burkholderia cepacia. Specially, 16S rDNA gene sequence of YKJ2 showed 99% of sequence similarity with B. cepacia. Observation through the optical microscope revealed that YKJ2 was effective on suppression of the spore germination and the hyphal growth of pathogens. YKJ2 treatment on pathogens induced marked morphological changes like hyphal swelling and degradation of cell wall. In the case of phytophthora blight, the zoosporangium formation was restrained. On the basis of the results of this study, we propose that an antagonistic microorganism, B. cepacia, found in this study naming as "B. cepacia strain YKJ2" and has great potential as one of biological control agents against major diseases of paprika.

Effect of Harvest Time, Precooling, and Storage Temperature for Keeping the Freshness of 'Maehyang' Strawberry for Export (수출딸기 '매향'의 신선도 유지를 위한 수확시간, 예냉 및 저장온도의 효과)

  • Park, Ji Eun;Kim, Hye Min;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.404-410
    • /
    • 2012
  • This study was conducted to examine effects of harvest time (09:00 vs. 14:00), precooling at $4^{\circ}C$ vs. no precooling, and storage temperature (4 vs. $8^{\circ}C$) on the storage life of 'Maehyang' strawberry fruits for export. Fruits at a 60% ripe stage were harvested from a commercial greenhouse in Gyeongsangnamdo, Jinju on May 4, 2010. Fruits were precooled by a forced draft cooling for three hours, transported for about 30 minutes and then stored, immediately. Small precoolers set in the farm were used for precooling. Fruits were placed in constant temperature chamber (4 or $8^{\circ}C$) after packaging using PVC wrap and a cardboard box. Fruits were examined for their changes in weight, hardness, Hunter color values, soluble solids content (SSC), and incidence of gray mold (Botrytis cinerea) during storage at a two days interval from May 6 to May 14, 2010. Hardness and SSC decreased as the ripening stage progressed. The Hunter's 'L' and 'a' value of fruit color decreased as time passed. Also, fresh weight decreased during storage at all temperatures. Soft rot appeared on epidermal tissues and followed by gray mold. Incidence of gray mold was greater at $8^{\circ}C$ storage temperature than in $4^{\circ}C$ storage temperature. However, no difference by the harvested time and precooling. The results indicate that effectiveness for keeping the freshness was best achieved by precooling at $4^{\circ}C$ and storage at $4^{\circ}C$, respectively.

Control of Diseases and Insects for Pesticide-free Cultivation of Leafy Vegetables (엽채류 유기재배의 병해충 관리)

  • Seo, Young-Ho;Cho, Byoung-Ouk;Choi, Jun-Keun;Kang, An-Seok;Jeong, Byung-Chan
    • Korean Journal of Organic Agriculture
    • /
    • v.17 no.2
    • /
    • pp.253-264
    • /
    • 2009
  • This study was conducted to establish agricultural practices to control diseases and insects for chemical pesticide-free cultivation of leafy vegetables. Two diseases, gray mold(Botrytis cinerea) and soft rot(Erwinia carotovora), on lettuce were reduced by controlling temperature and humidity using air-circulation fan. The aphidophagous lady beetle(Harmonia axyridis) and primary parasitoids(Aphidius colemani) showed activity to control aphids density on Chinese cabbage. Co-application of cooking oil and yolk mixture (COY) and BT(Bacillus thuringiensis) decreased diseases including soft rot(Erwinia carotovora), downy mildew(Peronospora brassicae Gaumann), and powdery mildew(Eryslphe polygoni), and insects such as diamondback moth(Plutella xylostella) and beet armyworm(Spodoptera exigua Hubner). Neem extract treatment reduced downy mildew(Peronospora destructor) on Welsh onion.

  • PDF

토양길항세균 Bacillus sp. KL-3의 대사산물을 이용한 벼도열병균 Pyricularia oryzae의 생물학적방제

  • 김규영;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.4
    • /
    • pp.396-402
    • /
    • 1997
  • Biocontrol of plant pathogens provides an alternative means of reducing the incidence of plant diseases without the negative aspects of chemical pesticides. Nowdays, as the resistant fungi about the chemical fungicides have revealed and the concern of environment has increased, the biological control of phytopathogenic fungi by the antagonistic microorganisms is very much indispensable. For the selection of strong antagonistic bacterium for biological control agent of rice leafblast and cucumber gray mold rot, the antifungal strain KL-3 strain was selected among 120 strains isolated from the rhizosphere soils. And the strain was identified to be a species of Bacillus subtilis or closely related strain. In several biochemical and in vitro antibiosis tests, antifungal substances of Bacillus sp. KL-3 were presumed heat stable, micromolecular antibiotic substances. In vivo test and vinyl house field test, the antifungal substances of Bacillus sp. KL-3 represented excellent biocontrol ability aganist Alternaria mali, Phyricularia oryzae, and Alternaria kikuchiana as well as broad spectrum of other fungi. In particular, Bacillus sp. KL-3 strain showed more predominant activity than some chemical fungicides against fungi shown to resist chemcal fungicides.

  • PDF