• Title/Summary/Keyword: gray mold (Botrytis cinerea)

Search Result 157, Processing Time 0.021 seconds

Effects of Antagonistic Rhizobacteria on the Biological Control of Gray Mold in Greenhouse Grown Strawberry Plants (길항성 근원 세균이 딸기 시설재배에서 발생하는 잿빛곰팡이병의 생물학적 제어에 미치는 영향)

  • Cho, Jung-Il;Cho, Ja-Yong;Yang, Seung-Yul
    • Korean Journal of Organic Agriculture
    • /
    • v.13 no.2
    • /
    • pp.161-173
    • /
    • 2005
  • This study was carried out to clarify the effects of antifungal bacterial strains isolated from the greenhouse soil grown strawberry plants on the growth inhibition of plant pathogen, gray mold (Botrytis cinerea) infected in strawberry plants in Damyang and Jangheung districts. Antagonistic bacterial strains were isolated and investigated into the antagonistic activity against gray mold. Screened ten bacterial strains which strongly inhibited Botrytis cinerea were isolated from the greenhouse grown strawberry plants, and the best antifungal microorganism designated as SB 143 was finally selected. Antifungal bacterial strain SB 143 was identified to be the genus Bacillus sp. based on the morphological and biochemical characterization. Bacillus sp. SB 143 showed 59.4% of antifungal activity against Botrytis cinerea. By the bacterialization of culture broth and heated filtrates of culture broth, Bacillus sp. SB 143 showed 93.1% and 32.1% of antagonistic activity against Botrytis cinerea.

  • PDF

Occurrence of Gray Mold in Mango Caused by Botrytis cinerea in Korea

  • Wan-Gyu Kim;Gyo-Bin Lee;Soon-Yeong Hong;Weon-Dae Cho
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.295-298
    • /
    • 2023
  • During a disease survey conducted in April 2022, we observed severe gray mold symptoms on inflorescences of mango trees (Mangifera indica) grown in a vinyl greenhouse in Jeju, Korea. The symptoms occurred on the flowers and peduncles, on which a lot of gray molds were formed. The incidence of gray mold on the inflorescences in the vinyl greenhouse ranged from 10% to 40%. Three fungal isolates were obtained from the lesions and identified as Botrytis cinerea based on their morphological characteristics and phylogenetic analysis. All isolates of B. cinerea were tested for their pathogenicity to inflorescences of mango trees through artificial inoculation. The pathogenicity of the isolates was confirmed on the flowers and peduncles. The symptoms induced by the isolates were similar to those on the inflorescences of mango trees observed in the disease survey. This is the first report of B. cinerea causing gray mold in mango in Korea.

Occurrence of Gray Mold in Wasabi Caused by Botrytis cinerea in Korea

  • Wan-Gyu Kim;Gyo-Bin Lee;Hong-Sik Shim;Weon-Dae Cho
    • The Korean Journal of Mycology
    • /
    • v.51 no.4
    • /
    • pp.259-263
    • /
    • 2023
  • During crop disease surveys in 2019 and 2021, we observed gray mold symptoms on the leaves of wasabi (Eutrema japonicum) plants grown in vinyl greenhouses in Taebaek and Pyeongchang, Gangwon Province, Korea. The symptoms appeared at the edges of the leaves, where the infected areas turned black and rotted, and many gray molds formed on the lesions. The incidence of gray mold on the leaves in the vinyl greenhouses at the two locations ranged from 1 to 30%. Four fungal isolates were obtained from leaf lesions and identified as Botrytis cinerea based on morphological characteristics and phylogenetic analysis. Two isolates of B. cinerea were used for pathogenicity tests on the leaves of wasabi plants by artificial inoculation. The pathogenicity of the isolates was confirmed in leaves. The symptoms induced by the isolates were similar to those observed in wasabi leaves in the vinyl greenhouses investigated. This is the first report of B. cinerea causing gray mold in wasabi in Korea.

Persimmon Gray Mold Caused by Botrytis cinerea (Botrytis cinerea에 의한 감나무 잿빛곰팡이병)

  • 권진혁;강수웅;경상대
    • Plant Disease and Agriculture
    • /
    • v.5 no.1
    • /
    • pp.55-57
    • /
    • 1999
  • Botrytis cinerea was isolated from a gray mo이 leaf lesion on persimmon in fields of Kyeonsangnam-do from 1996 to 1998, and etiological study was conducted including physiological characteristics. It formed gray mold lesion with light green color on leaves of persimmon (Diospyros kaki). The temperature range for mycelial growth was between $5^{\circ}C$ and $30^{\circ}C$ with the optimum temperatures of $20^{\circ}C$ to $25^{\circ}C$. Conidia were oviod, cylindric, and colorless and their dimensions in culture were $8.4~11.5\times7.0~8.9\mu\textrm{m}$. The optimum temperature of conidial germination was $25^{\circ}C$. Sclerotia on potato dextrose agar medium were well formed and brownish condiophores were observed with their size of $18.5~64.9\times4.5~8.0\mu\textrm{m}$. Symptoms on artificially inoculated plants were similar to those of gray mold disease on persimmon caused by Botrytis cinerea in fields.

  • PDF

Isolation of Antifungal Bacterial Strain Bacillus sp. against Gray Mold infected in Kiwi Fruits and its Disease Control (참다래 잿빛곰팡이 병원균에 대한 길항균 Bacillus sp. 분리와 병해 억제 작용)

  • Cho, Jung-Il;Cho, Ja-Yong
    • Korean Journal of Organic Agriculture
    • /
    • v.14 no.4
    • /
    • pp.399-410
    • /
    • 2006
  • This study was carried out to identity the effects of antifungal bacteria isolated from the soil grown kiwi fruit plants on the growth inhibition of Botrytis cinerea causing gray mold in kiwi fruit plants in the southern districts of Jeonnam. Two hundred and fifty antagonistic microorganisms were isolated and examined into the antifungal activity against Botrytis cinerea. We screened and isolated four bacterial strains which strongly inhibited Botrytis cinerea from the soil grown kiwi fruit plants. And the best antifungal bacterial strain which called CHO 163 was finally selected. Antagonistic microorganism CHO 163 was identified to be the genus Bacillus sp. based on the morphological and biochemical characterization. Bacillus sp. CHO 163 showed 86.9% of antifungal activity against Botrytis cinerea. By the bacterialization of culture broth and heated filtrates of culture broth, Bacillus sp. CHO 163 showed almost all of antagonistic activity against Botrytis cinerea. And we also confirmed that in vitro the treatment of Bacillus sp. CHO 163 cultured by SD+B+P broth efficiently controled the growth of Botrytis cinerea causing gray mold in kiwi fruit plants.

  • PDF

An Outbreak of Gray Mold Caused by Botrytis cinerea on Kenaf(Hibiscus cannabinus L.)

  • Kwon, Jin-Hyeuk;Kang, Dong-Wan;Lee, Seong-Tae;Shim, Chang-Ki;Kim, Min-Jeong;Kim, Jinwoo
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.25-32
    • /
    • 2016
  • A severe outbreak of gray mold on kenaf (Hibiscus cannabinus L.) was observed on kenaf grown in the research field of Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, Korea in 2014. Gray mold appeared on young plants as gray-brown velvety mold covering stems and leaves. Infections that girdled the stem caused wilting above the infected area and developed a canker. The casual fungus formed grayish brown colonies on potato dextrose agar. The conidia were one celled, mostly ellipsoid or ovoid in shape, colorless or pale brown in color, and 6-18 × 4-10 ㎛ in size. The conidiophores were 15-32 ㎛ in length. These measurements and taxonomic characteristics were most similar to those of Botrytis. DNA sequencing and phylogenetic analysis of the complete internal transcribed spacer rRNA gene region confirmed that the fungal isolates were indeed Borytis cinerea. Koch's postulates were supported by pathogenicity tests conducted on healthy plants. On the basis of mycological characteristics and pathogenicity test on host plants, the fungus was identified as Botrytis cinerea. To the best of our knowledge, this is the first report of a gray mold caused by B. cinerea on kenaf in Korea.

Gray Mold of Zinnia elegans Caused by Botrytis cinerea in Korea (Botrytis cinerea에 의한 백일홍 잿빛곰팡이병)

  • Kwon, Jin-Hyeuk;Son, Kyung-Ae;Jeong, Seon-Gi;Park, Chang-Seuk
    • Research in Plant Disease
    • /
    • v.10 no.4
    • /
    • pp.337-340
    • /
    • 2004
  • In April of 2003, the gray mold disease caused by Botrytis cinerea was occured in zinnia seedlings grown in greenhouse at Gyeongsangnam-do Agricultural Research and Extension Services, and farmer's nursery. The symptoms of infected plants were started with water-soaking lesions in flower bud, leaves and stems. The lesions gradually expanded and infected plants became withered and discolored to gray or dark from the tip. The conidia and mycelia of the pathogen were appeared on flowers, leaves and stem. The conidia were gray, 1-celled, mostly ellipsoid or ovoid in shape and were 5${\sim}$16 ${\times}$ 4${\sim}$8 ${\mu}m$ in size. Conidiophores were 12${\sim}$28 ${\mu}m$ in size. The pathogenic fungi formed sclerotia abundantly on potato dextrose agar. The optimum temperature for sclerotial formation was $20^{\circ}C$. Pathogenicity of the causal organism was proved according to Koch's postulate. The causal organism was identified as Botrytis cinerea Persoon: Fries based on mycological characteristics. This is the first report on gray mold of Zinnia elegans caused by Botrytis cinerea in Korea.

Gray Mold on Saintpaulia ionantha Caused by Botrytis cinerea in Korea (Botrytis cinerea에 의한 바이올렛 잿빛곰팡이병)

  • Kim, Hyung-Moo
    • Research in Plant Disease
    • /
    • v.17 no.1
    • /
    • pp.75-77
    • /
    • 2011
  • Gray mold caused by Botrytis cinerea occurred on Saintpaulia ionantha in flower shop of the Jeonju city in Korea. Typical symptoms with brown water-soaked and rotting lesions were appeared on the flowers, leaves and petiole of infected plants. Many conidia spores appeared on the lesions under humid conditions. Colonies were grayish brown and sclerotial formation on potato dextrose agar. Conidia were one celled, mostly ellipsoidal or ovoid in shape, and were colorless to pale brown in color. The conidia were $7{\sim}14{\times}5{\sim}9\;{\mu}m$ in size. Based on pathogenicity and morphological characteristics of the isolated fungus, the causal fungus was identified as B. cinerea Persoon: Fries. Gray mold of S. ionantha was proposed to the name of this disease.

Occurrence of Gray Mold on Blueberry Trees Caused by Botrytis cinerea in Korea (Botrytis cinerea에 의한 블루베리 잿빛곰팡이병의 한국 내 발생)

  • Hong, Sung-Kee;Choi, Hyo-Won;Lee, Young-Kee;Lee, Sang-Yeob;Kim, Wan-Gyu
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.213-216
    • /
    • 2011
  • Gray mold symptoms were frequently observed on green twigs, blossoms, leaves, and fruits of blueberry trees grown in greenhouses in Cheongyang, Dangjin, Daejeon, and Jeju during disease survey in eight locations of Korea from 2007 to 2010. The disease symptoms were not observed in the fields of the other locations investigated. The disease incidence ranged 1~30% in the greenhouses investigated. A total of 27 single spore isolates of Botrytis species were obtained from the gray mold symptoms, and all the isolates were identified as Botrytis cinerea based on their morphological and cultural characteristics. Four isolates of the fungus were tested for pathogenicity to leaves of four varieties of blueberry trees by artificial inoculation with conidial suspensions. All the tested isolates caused gray mold symptoms on the leaves, which were similar to those observed in the greenhouses. This is the first report that B. cinerea causes gray mold of blueberry trees grown in greenhouses in Korea.

First Report of Gray Mold Disease of Sponge Gourd (Luffa cylindrica) Caused by Botrytis cinerea in Korea

  • Aktaruzzaman, Md.;Afroz, Tania;Kim, Byung-Sup;Shin, Hyeon-Dong
    • Research in Plant Disease
    • /
    • v.22 no.2
    • /
    • pp.107-110
    • /
    • 2016
  • In October 2014, an occurrence of gray mold was observed on young fruits of sponge gourd (Luffa cylindrica) in Sachunmun, Gangneung, South Korea. Symptoms included abundant mycelia growth with gray conidia on young fruits and finally rotting the fruits. The fungus was isolated from symptomatic fruits and its pathogenicity was confirmed. Based on the morphological features and sequence analysis of ITS-5.8S rDNA, G3PDH, HSP60, and RPB2 genes, the pathogen was identified as Botrytis cinerea Pers. This is the first report of gray mold caused by B. cinerea on L. cylindrica in Korea.