• Title/Summary/Keyword: gravity waves

Search Result 135, Processing Time 0.027 seconds

NUMERICAL SIMULATION OF TWO-DIMENSIONAL FREE-SURFACE FLOW AND WAVE TRANSFORMATION OVER CONSTANT-SLOPE BOTTOM TOPOGRAPHY

  • DIMAKOPOULOS AGGELOS S;DIMAS ATHANASSIOS A
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.09b
    • /
    • pp.842-845
    • /
    • 2005
  • A method for the numerical simulation of two-dimensional free-surface flow resulting from the propagation of regular gravity waves over topography with arbitrary bottom shape is presented. The method is based on the numerical solution of the Euler equations subject to the fully nonlinear free-surface boundary conditions and the appropriate bottom, inflow and outflow conditions using a hybrid finite-differences and spectral-method scheme. The formulation includes a boundary-fitted transformation, and is suitable for extension to incorporate large-eddy simulation (LES) and large-wave simulation (LWS) terms for turbulence and breaking wave modeling, respectively. Results are presented for the simulation of the free-surface flow over two different bottom topographies, with constant slope values of 1:10 and 1:20, two different inflow wave lengths and two different inflow wave heights. An absorption outflow zone is utilized and the results indicate minimum wave reflection from the outflow boundary. Over the bottom slope, lengths of waves in the linear regime are modified according to linear theory dispersion, while wave heights remain more or less unchanged. For waves in the nonlinear regime, wave lengths are becoming shorter, while the free surface elevation deviates from its initial sinusoidal shape.

  • PDF

Improving aeroelastic characteristics of helicopter rotor blades in forward flight

  • Badran, Hossam T.;Tawfik, Mohammad;Negm, Hani M.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.1
    • /
    • pp.31-49
    • /
    • 2019
  • Flutter is a dangerous phenomenon encountered in flexible structures subjected to aerodynamic forces. This includes aircraft, helicopter blades, engine rotors, buildings and bridges. Flutter occurs as a result of interactions between aerodynamic, stiffness and inertia forces on a structure. The conventional method for designing a rotor blade to be free from flutter instability throughout the helicopter's flight regime is to design the blade so that the aerodynamic center (AC), elastic axis (EA) and center of gravity (CG) are coincident and located at the quarter-chord. While this assures freedom from flutter, it adds constraints on rotor blade design which are not usually followed in fixed wing design. Periodic Structures have been in the focus of research for their useful characteristics and ability to attenuate vibration in frequency bands called "stop-bands". A periodic structure consists of cells which differ in material or geometry. As vibration waves travel along the structure and face the cell boundaries, some waves pass and some are reflected back, which may cause destructive interference with the succeeding waves. In this work, we analyze the flutter characteristics of a helicopter blades with a periodic change in their sandwich material using a finite element structural model. Results shows great improvements in the flutter forward speed of the rotating blade obtained by using periodic design and increasing the number of periodic cells.

Interactions of Wave and Poro-elastic Seabed under Uniform Current (일정 흐름장에서의 파랑과 다공질 탄성 해저지반의 상호작용)

  • Kim Beom-yeong;Lee Gil-Seong;Park U-Seon
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.45-52
    • /
    • 1997
  • Ocean seabed is usually covered with various types of marine soils. A marine soil is a mixture of two phases: soil particles that forms an interlocking skeletal frame, pore fluids that occupy a major portion of pore space. When gravity water waves propagate over a porous movable seabed, a hydrodynamic pressure on the fluid-seabed interface and fluid flow in the porous medium are induced. (omitted)

  • PDF

Correlations between Long- and Short-Period Waves in Shallow Water Region (천해역에서의 장ㆍ단주기파 상관관계)

  • 정원무;박우선;김규한;김지희
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.35-41
    • /
    • 2002
  • 천해역에서 관찰되는 장주기파는 발생 기구에 따라서 surf beat, setdown wave, locked wave, 또는 Far-infra-gravity wave 등으로 다양하게 불리 우며, 모두 0.5-수 분대의 주기를 갖는다. 이들은 정의에 따라 약간씩 다르기는 하지만 모두 계류된 선박의 동요뿐만 아니라 해안선 침식과도 밀접한 관련이 있다는 것이 일반적으로 인정되고있다(가등 등, 1989). (중략)

  • PDF

Numerical Relativity and Gravitational Waves

  • Kang, Gungwon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.77.2-77.2
    • /
    • 2014
  • Numerical relativity is one of the crucial tools to theoretically probe systems of strong gravity such as compact binary coalescences and gravitational collapses. Understandings of such systems and gravitational wave forms extracted have been used for implementing data analysis pipelines on ground based gravitational wave observation experiments such as LIGO, Virgo and KGRA currently undergoing. In this talk, brief reviews and perspectives will be given for numerical studies on binary black holes.

  • PDF

Attenuation of High-Frequency Wave Energy Due to Opposing Currents

  • Suh, Kyung-Duck;Lee, Dong-Young-
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1993.07a
    • /
    • pp.20-25
    • /
    • 1993
  • In coastal waters, more often than not, waves propagate on currents driven by tidal forces, earth’s gravity, or wind. There have been a number of studies for dealing with the change of wave spectrum due to tile presence of current. Based on the conservation of wave action, Hedges et al. (1985) have proposed an equation which describes the influence of current on the change of wave spectrum in water of finite depth. (omitted)

  • PDF

Atmospheric Pollutant Concentrations under the Influences of Internal Gravity Wave and Sea-Land Breeze Circulations in the Mountainous Coastal Regions (산악연안지역에서 내부중력파와 해륙풍순환 영향하의 대기오염농도)

  • Hyo Choi;Joon Choi
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.23 no.1
    • /
    • pp.18-33
    • /
    • 1995
  • Under the synoptic scale strong westerly winds flowing over the large steep mountains in the eastern coastal region, the strong downslope wind storms such as internal gravity waves should be generated in the lee-side of mountain. Int he daytime as sea breeze circulation induced by meso-scale thermal forcing from sea toward inland confines to the offshore side of coastal sites due to the eastward internal gravity waves. Thus, surface winds near the coastal seas were relatively weaker than those in the open sea or the inland sites. Evidently, two different kinds of atmospheric circulations such as an internal gravity wave circulation with westerly wind and a sea breeze circulation with both easterly wind near the sea surface and westerly in the upper level were apparently produced. Under this situation the atmospheric pollutants at Kangnung city should be trapped by two different circulations in the opposite directions and resulted in the high concentrations of Total Suspended Particles (TSP) and ozone (O3). At night a meso-scale land breeze from land toward the more intensification of westerly winds in the coastal regions. The concentrations of TSP controled by the strong surface winds blowing from the mountain side toward the coastal sea were relatively higher at night than those in the daytime case and the concentrations of O3 due to the downward transport of ozone from the upper atmosphere toward the surface were also much higher at night than during the day. Consequently, the atmospheric pollutant concentrations in the mountainous coastal region under the downslope wind storms were higher than those after and before the occurrences of wind storms.

  • PDF

Study on Dynamic Stability of Cylindrical Structure in Waves (파랑 중 실린더형 구조물의 동적 안정성에 대한 연구)

  • Jang, Min-Suk;Jo, Hyo-Jae;Hwang, Jae-Hyuk;Kim, Jae-Heui;Lee, Byeong-Seong;Park, Chung-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.196-201
    • /
    • 2017
  • A cylindrical structure has a very long period of heave and pitch motion response in ocean waves. To obtain the dynamic stability of a cylindrical structure, it is necessary to obtain the suitable metacentric height (GM). However, in a structure with sufficient metacentric height, Mathieu instability can occur if the natural frequency of the heave motion is double the natural frequency of the roll and pitch motion. This study carried out numerical calculations and experiments for vertical-axis wind turbines with cylindrical floaters, which had three different centers of gravity. In the regular wave experiment, the divergence of the structure motion without yaw was observed when the natural frequency of the heave motion was double the natural frequency of the roll and pitch motion. In the irregular wave experiment, the motion spectra of the structures with the different centers of gravity were compared, and one was very high when the natural frequency of the heave motion was double the natural frequency of the roll and pitch motion.

Characteristics of Atmospheric Circulation in Sokcho Coast (속초연안에서 대기순환의 특성)

  • Choi Hyo
    • Journal of Environmental Science International
    • /
    • v.14 no.1
    • /
    • pp.41-51
    • /
    • 2005
  • Using three-dimensional non-hydrostatical numerical model with one way double nesting technique, atmo­spheric circulation in the mountainous coastal region in summer was investigated from August 13 through 15, 1995. During the day, synoptic westerly wind blows over Mt. Mishrung in the west of a coastal city, Sokcho toward the East Sea, while simultaneously, easterly upslope wind combined with both valley wind from plain (coast) toward mountain and sea-breeze from sea toward inland coast blows toward the top of the mountain. Two different directional wind systems confront each other in the mid of eastern slope of the mountain and the upslope wind goes up to the height over 2 km, becoming an easterly return flow in the upper level over the sea and making sea-breeze front with two kinds of sea-breeze circulations of a small one in the coast and a large one in the open sea. Convective boundary layer is developed with a thickness of about 1km over the ground in the upwind side of the mountain in the west and a thickness of thermal internal boundary layer from the coast along the eastern slope of the mountain is only confined to less than 200 m. On the other hand, after sunset, no prohibition of upslope wind generated during the day and downward wind combined with mountain wind from mountain towardplain and land-breeze from land toward under nocturnal radiative cooling of the ground surfaces should intensify westerly downslope wind, resulting in the formation of wind storm. As the wind storm moving down along the eastern slop causes the development of internal gravity waves with hydraulic jump motion in the coast, bounding up toward the upper level of the coastal sea, atmospheric circulation with both onshore and offshore winds like sea-breeze circulation forms in the coastal sea within 70 km until midnight and after that, westerly wind prevails in the coast and open seas.

Evolution of Wind Storm over Coastal Complex Terrain (연안복합지형에서 바람폭풍의 진화)

  • Choi, Hyo;Seo, Jang-Won;Nam, Jae-Cheol
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.865-880
    • /
    • 2002
  • As prevailing synoptic scale westerly wind blowing over high steep Mt. Taegulyang in the west of Kangnung coastal city toward the Sea of Japan became downslope wind and easterly upslope wind combined with both valley wind and sea breeze(valley-sea breeze) also blew from the sea toward the top of the mountain, two different kinds of wind regimes confronted each other in the mid of eastern slope of the mountain and further downward motion of downlsope wind along the eastern slope of the mountain should be prohibited by the upslope wind. Then, the upslope wind away from the eastern slope of the mountain went up to 1700m height over the ground, becoming an easterly return flow in the upper level of the sea. Two kinds of circulations were detected with a small one in the coastal sea and a large one from the coast toward the open sea. Convective boundary layer was developed with a thickness of about 1km over the ground in the upwind side of the mountain in the west, while a thickness of thermal internal boundary layer(TIBL) form the coast along the eastern slope of the mountain was only confined to less than 200m. After sunset, under no prohibition of upslope wind, westerly downslope wind blew from the top of the mountain toward the coastal basin and the downslope wind should be intensified by both mountain wind and land breeze(mountain-land breeze) induced by nighttime radiative cooling of the ground surfaces, resulting in the formation of downslope wind storm. The wind storm caused the development of internal gravity waves with hydraulic jump motion bounding up toward the upper level of the sea in the coastal plain and relatively moderate wind on the sea.