• Title/Summary/Keyword: gravity potential

Search Result 178, Processing Time 0.023 seconds

Fundamental Study on Cathodic Protection and Material Development as Erosion-Control Methods of Oceanic Centrifugal Pump(1) (해상용 원심펌프 임펠러의 침식억제법으로 음극방식 및 재료개발에 관한 기초연구 1)

  • 이진열;임우조
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.56-66
    • /
    • 1995
  • Recently, with theraped advancement in th oceanology such an ocean-going vessel and oceanic structures, there is a need to study the cavitation erosion-corrosion control of pump impeller, the partial element of ocean machinery, for more effective operation. Especially, the cathodic protection (impressed current method & Al-sacrificial anode method) was applied to sea water, and Cu-alloy material mixed Zn & Al was used as a control method of cavitation erosion-corrosion. In this study, used the piezoelectric vibrator with 20KHz, 24.mu.m to cavity generation apparatus, and investigated the weight loss, weight loss rate, electrode potential & current density etc. under this condition. According to test result, thos describes how to indentify an influence of the cathodic protection and Al & Zn addition in material development for the control of cavitation erosion-corrosion, and those will serve as fundamental data on the cavitation erosion-corrosion control of oceanic centrifugal pump.

  • PDF

The Proposal of a New Drainage System without Incline of Piping and Experiment on Drainage Flow Characteristics (구배가 없는 신배수시스템의 제안 및 배수유동 특성에 관한 실험적 연구)

  • Cha Young-Ho;Yee Jurng-Jae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.452-458
    • /
    • 2005
  • In Korea, pumping pipe using gravity way by water is most popular method in drainage system. But, it is difficult to repair a drainpipe in this method because the drain pipe diameter is increased as using this method. In this research, we propose a new drainage system. The system aim for an adaptedness with buildings, freedom of plan, construction and renewal in water pipe equipments, etc. The new system is not need of incline of piping, and it uses drainage power that is changed potential energy by high velocity flow as making Siphonage at vertical pipe. Therefore, the diameter of piping can decreased than existing piping system established in the ceiling. Also because connecting position will be located at the lower part, it is changed the potential energy of drainage to the high velocity flow. In addition, drainage will be smooth because the fixture drain is linked by each drain pipes.

Compressibility and hydraulic conductivity of calcium bentonite treated with pH-responsive polymer

  • Choo, Hyunwook;Choi, Youngmin;Kim, Young-Uk;Lee, Woojin;Lee, Changho
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.329-337
    • /
    • 2020
  • Polyacrylamide (PAM) possesses high water absorption capacity and a unique pH-dependent behavior that confer large potential to enhance the engineering performance of clays. In this study, calcium bentonite was treated with a nonionic PAM. Flexible-wall permeability test and the consolidation test were performed at different pH values to evaluate the effects of PAM treatment on the hydraulic and consolidation properties. Test results demonstrate that index properties are affected by the adsorbed PAM on clay surface: a decrease in specific gravity, a decrease in net zeta potential, and an increase in liquid limit are observed due to the PAM treatment. At a given pH, the compressibility of the treated clay is greater than that of the untreated clay. However, the compression indices of untreated and treated clays can be expressed as a single function of the initial void ratio, regardless of pH. Hydraulic conductivity is reduced by PAM treatment about 5 times at both neutral and alkaline pH conditions under similar void ratios, because of the reduction in size of the water flow channel by PAM expansion. However, at acidic pH, the hydraulic conductivity of the treated clay is slightly higher than the untreated clay. This reflects that the treated bentonite with PAM can be beneficially used in barrier system for highly alkaline residues.

Dynamic characteristics and fatigue damage prediction of FRP strengthened marine riser

  • Islam, A.B.M. Saiful
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.21-32
    • /
    • 2018
  • Due to the escalation in hydrocarbon consumption, the offshore industry is now looking for advanced technology to be employed for deep sea exploration. Riser system is an integral part of floating structure used for such oil and gas extraction from deep water offering a system of drill twines and production tubing to spread the exploration well towards the ocean bed. Thus, the marine risers need to be precisely employed. The incorporation of the strengthening material, fiber reinforced polymer (FRP) for deep and ultra-deep water riser has drawn extensive curiosity in offshore engineering as it might offer potential weight savings and improved durability. The design for FRP strengthening involves the local design for critical loads along with the global analysis under all possible nonlinearities and imposed loadings such as platform motion, gravity, buoyancy, wave force, hydrostatic pressure, current etc. for computing and evaluating critical situations. Finite element package, ABAQUS/AQUA is the competent tool to analyze the static and dynamic responses under the offshore hydrodynamic loads. The necessities in design and operating conditions are studied. The study includes describing the methodology, procedure of analysis and the local design of composite riser. The responses and fatigue damage characteristics of the risers are explored for the effects of FRP strengthening. A detail assessment on the technical expansion of strengthening riser has been outlined comprising the inquiry on its behavior. The enquiry exemplifies the strengthening of riser as very potential idea and suitable in marine structures to explore oil and gas in deep sea.

A Study on the Properties of the Heavy Duty Rust-Converting Agent used in the Potential Hazard Areas of Fire & Explosion (잠재적 화재.폭발 위험 지역 작업용 녹전환형 중방식 코팅제의 특성에 관한 연구)

  • 강영구
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.102-111
    • /
    • 1998
  • This study was concerned with the development of a heavy duty rust-converting agent, the function of which is to form metal complex coatings, containing vinyl halide-acrylic terpolymer emulsion, defoamer, emulsifying agent, glass flakes, chelating agent such as gallotannic acid, gallic acid, and pyrogallic acid, and other additives. The resulted emulsion products(Sample No.1~No.5) were characterized through test either in the forms of emulsions, which include Viscosity, Penetration rate, Acidity and Film drying rate test, or in the forms of coated layer on rusty steel substrates by FT-IR, which include hardness, gloss, salt spray, adhesion and flame retardant test. The test results are as follows ; Penetration rate(0.1~0.4 mm/min), Solid content(70%), Acidity (pH 1.8~2.0), Specific gravity(1.30~1.35), Film drying rate(108min, RH 40% ; 150min, RH 80%), Gloss(83~92, incident angle $60^{\circ}$; 88~97, incident angle $85^{\circ}$), Pencil hardness(4H~5H), Adhesion (100/100), Salt spray test(>720Hr), LOI(%) value(38%), Vertical burning test(UL 94-v-l). According to the various performance of specimens show above, the evaluation of the availability of this heavy duty rust-converting agent can be concluded that all the samples(No.1~No.5) are capable of being used in the field of chemical plant and in the hazard areas of fire and explosion potential. It was observed that the properties of sample No.2, especially gloss and hardness, were much better than that of the other samples.

  • PDF

Short Wave Infrared Imaging for Auroral Physics and Aeronomy Studies

  • Trond S. Trondsen;John Meriwether;Craig Unick;Andrew Gerrard;Matthew Cooper;Devin Wyatt
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.121-138
    • /
    • 2024
  • Advances in solar-terrestrial physics are generally linked to the development of innovative new sensor technologies, affording us ever better sensitivity, higher resolution, and broader spectral response. Recent advances in low-noise InGaAs sensor technology have enabled the realization of low-light-level scientific imaging within the short-wave infrared (SWIR) region of the electromagnetic spectrum. This paper describes a new and highly sensitive ultra-wide angle imager that offers an expansion of auroral and airglow imaging capabilities into the SWIR spectral range of 900-1,700 nm. The imager has already proven successful in large-area remote sensing of mesospheric temperatures and in providing intensity maps showing the propagation and dissipation of atmospheric gravity waves and ripples. The addition of an automated filter wheel expands the range of applications of an already versatile SWIR detector. Several potential applications are proposed herein, with an emphasis on auroral science. The combined data from this type of instrument and other existing instrumentation holds a strong potential to further enhance our understanding of the geospace environment.

Nonlinear Control of an Electromagnetic Levitation System Using High-gain Observers for Mmagnetic Bearing Wheels (고이득 관측기를 이용한 자기 베어링 휠용 자기 부상 시스템의 비선형 제어)

  • Choi, Ho-Lim;Shin, Hee-Sub;Koo, Min-Sung;Lim, Jong-Tae;Kim, Yong-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.573-580
    • /
    • 2009
  • In this paper, we develop a functional test model for magnetic bearing wheels. The functional test model is an electromagnetic levitation system that has three degree of freedom, which consists of one axial suspension from gravity and two axes gimbaling capability to small angels. A nonlinear controller with high-gain observers is proposed and the real-time experiment results show that the rotor is accurately levitated at the desired position and well-balanced, which is a suitable result for the potential use an magnetic bearing wheels. Also, the proposed scheme exhibits better performance when it is compared with the conventional PID control method.

Tidal Disruption Flares from Stars on Bound Orbits

  • Hayasaki, Kimitake;Stone, Nicholas;Loeb, Abraham
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.60.1-60.1
    • /
    • 2013
  • We study tidal disruption and subsequent mass fallback process for stars approaching supermassive black holes on bound orbits, by performing three dimensional Smoothed Particle Hydrodynamics simulations with a pseudo-Newtonian potential. We find that the mass fallback rate decays with the expected -5/3 power of time for parabolic orbits, albeit with a slight deviation due to the self-gravity of the stellar debris. For eccentric orbits, however, there is a critical value of the orbital eccentricity, significantly below which all of the stellar debris is bound to the supermassive black hole. All the mass therefore falls back to the supermassive black hole in a much shorter time than in the standard, parabolic case. The resultant mass fallback rate considerably exceeds the Eddington accretion rate and substantially differs from the -5/3 power of time. We also show that general relativistic precession is crucial for accretion disk formation via circularization of stellar debris from stars on moderately eccentric orbits.

  • PDF

Time Mean Drifting Forces on a Cylinder in Water of Finite Depths -Direct Pressure Integration Method- (유한(有限)깊이의 물에 떠있는 주상체(柱狀體)에 작용(作用)하는 시간평균표류력(時間平均漂流力) -직접압력(直接壓力) 적분법(積分法)-)

  • K.P.,Rhee;K.K.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.2
    • /
    • pp.27-34
    • /
    • 1985
  • In this paper, the second order time mean forces acting on the circular cylinder floating on the free surface of a finite water depth are calculated. Under the assumption that fluid is idea and the wave the linear gravity wave, the velocity potential is calculated by the source distribution method, and the second order time mean lateral and vertical drifting forces are calculated by the direct integration of fluid pressures over the immersed body surface. The comparison of the lateral drifting forces with Rhee's results by momentum theorem shows good agreements. And it is shown that the second order time sinkage forces of a floating circular cylinder cross zero for all water depths.

  • PDF

Quality Characteristics of Sponge Cake with Added Baked Black Soybean Powder (구운 검은콩 분말을 첨가한 스펀지 케이크의 품질 특성)

  • Jung, Hyun-Chul
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.3
    • /
    • pp.401-407
    • /
    • 2012
  • Baked black soybean has great nutritional value, so it is a great potential ingredient in cake. To find an acceptable ingredient ratio, baked black soybean powder was to wheat flour in different experimental groups. The control was pure wheat flour, and the experimental groups had 0 (control), 10%, 20%, 30%, and 40% baked black soybean powder added. The baked black soybean powder consists of moisture (4.88%), crude protein (34.46%), crude fat (11.35%), crude ash (4.84%), and carbohydrates (44.47%). The specific gravity, spreadability, and baking loss increased with an increase in the amount of baked black soybean powder, but specific volume decreased. The 'L' and 'b' chromaticity values of a sponge cake decrease with increased amounts of added baked black soybean powder. The texture becomes more hard and stuff with added baked black soybean powder, but springiness decreases. A sensory test found the best experimental group to be that of 20% powder added.