• Title/Summary/Keyword: gravity modeling

Search Result 192, Processing Time 0.032 seconds

Crustal Structure of the Continent-Ocean Zone around the Middle Eastern Part of Korean Peninsula Using Gravity Data (중력자료를 이용한 한반도 중부 대륙-해양 지역의 지각구조 연구)

  • 유상훈;민경덕;박찬홍;원중선
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.455-463
    • /
    • 2002
  • There have been few geophysical studies on the crustal structure of the continent-ocean zone around the middle eastern part of Korean peninsula, because of the lack of database in both land and ocean. The area for the study on the internal crustal structure using gravity data is bounded by the latitude of 37$^{\circ}$-38"N and longitude of 128$^{\circ}$-132$^{\circ}$E. WCA correction is applied to shipborne gravity data to integrate with gravity anomalies obtained on land. The high frequency components of the shipborne gravity data which are considered as the noise on survey track are effectively removed by means of correlating with satellite gravity data. The corrected shipborne free-air gravity anomaly is integrated with the Bouguer gravity anomaly on land under the same condition. The integrated gravity anomaly is divided into four areas for power spectrum analysis. The depths of Moho discontinuity increases gradually from inland to Ulleung basin. As the result of modeling based on power spectrum analysis, Moho discontinuity depth is about 33-35 km in the continental zone of Korea and 18-28 km at the continental margin. Such structural character is well elucidated in changing gravity data around Ulleung basin. The depths of Moho discontinuity in the southern ocean of Ulleung-island is 16--17 km, which is much lower than in the land. The result of crustal structure modeling in this study is similar to that computed by prior seismic exploration around this area.

Accuracy Assessment of the Upward Continuation using the Gravity Model from Ultra-high Degree Spherical Harmonics (초 고차항 구 조화 중력모델링에 의한 상향 연속의 정확도 검증)

  • Kwon Jay-Hyoun;Lee Jong-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.183-191
    • /
    • 2006
  • The accuracy of the upward continuation is assessed through the gravity modeling using an ultra-high degree spherical harmonic expansion. The difficulties in the numerical calculation of Legendre function with ultra-high degree, underflow and/or overflow, is successfully resolved in 128 bit calculation scheme. Using the generated Legendre function, the gravity anomaly with spatial resolution of $1'{\times}1'$ on the geoid is calculated. The generated gravity anomaly is degraded and extracted with various noise levels and data intervals, then upward continuation is applied to each data sets. The comparison between the upward continued gravity disturbances and the directly calculated from the spherical harmonics showed that the accuracy on the direct method was significantly better than that of Poisson method. In addition, it is verified that the denser and less noised gravity data on the geoid generates better gravity disturbance vectors at an altitude. Especially, it is found that the gravity noise level less than 5mGal, and the data interval less than 2arcmin is necessary for next generation precision INS navigation which requires the accuracy of 5mGal or better at an altitude.

Spatial distribution of hydrocarbon reservoirs in the West Korea Bay Basin in the northern part of the Yellow Sea, estimated by 3D gravity forward modeling (3차원 중력 모델링에 의해 예측된 황해 북부 서한만 분지 석유 저류층의 공간적 분포)

  • Choi, Sungchan;Ryu, In-Chang
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.6
    • /
    • pp.641-656
    • /
    • 2018
  • Although an amount of hydrocarbon has been discovered in the West Korea Bay Basin (WKBB), located in the North Korean offshore area, geophysical investigations associated with these hydrocarbon reservoirs are not permitted because of the current geopolitical situation. Interpretation of satellite derived potential field data can be alternatively used to image three-dimensional (3D) density distribution in the sedimentary basin associated with hydrocarbon deposits. We interpreted the TRIDENT satellite-derived gravity field data to provide detailed insights into the spatial distribution of sedimentary density structures in the WKBB. We used 3D forward density modeling for the interpretation that incorporated constraints from existing geological and geophysical information. The gravity data interpretation and 3D forward modeling showed that there are two modeled areas in the central subbasin that are characterized by very low density structures, with a maximum density of about $2,000kg/m^3$, indicating some type of hydrocarbon reservoir. One of the anticipated hydrocarbon reservoirs is located in the southern part of the central subbasin with a volume of about $250km^3$ at a depth of about 3,000 m in the Cretaceous/Jurassic layer. The other hydrocarbon reservoir should exist in the northern part of the central subbasin, with an average volume of about $300km^3$ at a depth of about 2,500 m. A comparison between the TRIDENT derived gravity field and the ship-based gravity field measured in 1980s shows us that our results are highly reliable and there is a very high probability to detect another low-density layer existings in the northwestern part of the central subbasin.

Finite Element Modeling of 2-stage Axially Deploying Beams Vibrating Under Gravity (중력에 의해 진동하는 2단 축방향 전개 보의 유한요소 모델링)

  • Yun, Won-Sang;Bae, Gyu-Hyun;Beom, Hee-Rak;Hong, Seong-Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.202-207
    • /
    • 2012
  • Multi-stage deploying beams are useful for transporting parts or products handling in production lines. However, such multi-stage beams are often exposed to unwanted vibration due to the presence of their flexibility and time-varying properties. This paper is concerned with dynamic modeling and analysis of 2-stage axially deploying beams under gravity by using the finite element method. A variable domain finite element method is employed to develop the dynamic model. A rigorous method to account for engagement of two-stage beams during the deploying procedure is introduced by breaking the entire domain into three variable domains. Several deploying strategies are tested to analyze the residual vibrations. Several examples are illustrated to investigate the self-induced damping and the effects of deploying strategy on the vibrations.

Geometrical dimensions effects on the seismic response of concrete gravity dams

  • Sevim, Baris
    • Advances in concrete construction
    • /
    • v.6 no.3
    • /
    • pp.269-283
    • /
    • 2018
  • This study presents the effects of geometrical dimensions of concrete gravity dams on the seismic response considering different base width/dam height (L/H) ratios. In the study, a concrete gravity dam with the height of 200 m is selected and finite element models of the dam are constituted including five different L/H ratios such as 0.25, 0.5, 0.75, 1.00, 1.25. All dams are modeled in ANSYS software considering dam-reservoir-foundation interaction. 1989 Loma Prieta earthquake records are applied to models in upstream-downstream direction and linear time history analyses are performed. Dynamic equilibrium equations of motions obtained from the finite element models of the coupled systems are solved by using Newmark time integration algorithm. The seismic response of the models is evaluated from analyses presenting natural frequencies, mode shapes, displacements and principal stresses. The results show that the L/H ratios considerably affect the seismic response of gravity dams. Also, the model where L/H ratio is 1.00 has more desirable results and most appropriate representation of the seismic response of gravity dams.

Crack Analysis of Concrete Gravity Dam subjected to Uplift Pressure using Surface Integral Method (표면적분법을 이용한 양압력이 작용하는 중력식 콘코리트 댐의 균열해석)

  • 진치섭;이영호;엄장섭;김태완
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.267-272
    • /
    • 2000
  • The modeling on uplift pressure on the foundation of a dam on which it was constructed, and on the interface between the dam and foundation is a critical aspect in the analysis of concrete gravity dams. The evaluation of stress intensity factor at the crack tip of concrete gravity dam due to uplift pressure effect by surface integral method is performed in this study. The effects of body force, overtopping pressure and water pressure on the crack-face are also considered in this study.

  • PDF

Simulating and evaluating regolith propagation effects during drilling in low gravity environments

  • Suermann, Patrick C.;Patel, Hriday H.;Sauter, Luke D.
    • Advances in Computational Design
    • /
    • v.4 no.2
    • /
    • pp.141-153
    • /
    • 2019
  • This research is comprised of virtually simulating behavior while experiencing low gravity effects in advance of real world testing in low gravity aboard Zero Gravity Corporation's (Zero-G) research aircraft (727-200F). The experiment simulated a drill rig penetrating a regolith simulant. Regolith is a layer of loose, heterogeneous superficial deposits covering solid rock on surfaces of the Earth' moon, asteroids and Mars. The behavior and propagation of space debris when drilled in low gravity was tested through simulations and visualization in a leading dynamic simulation software as well as discrete element modeling software and in preparation for comparing to real world results from flying the experiment aboard Zero-G. The study of outer space regolith could lead to deeper scientific knowledge of extra-terrestrial surfaces, which could lead us to breakthroughs with respect to space mining or in-situ resource utilization (ISRU). These studies aimed to test and evaluate the drilling process in low to zero gravity environments and to determine static stress analysis on the drill when tested in low gravity environments. These tests and simulations were conducted by a team from Texas A&M University's Department of Construction Science, the United States Air Force Academy's Department of Astronautical Engineering, and Crow Industries

Study of geological structure in area of Hwasan caldera using geophysical method (지구물리학적 방법에 의한 화산 칼데라 지역의 지질구조 연구)

  • Kwon, Byung-Doo;Lee, Heui-Soon;Yang, Joon-Mo;Park, Gye-Soon;Eom, Joo-Young;Kim, Dong-Oh
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.267-272
    • /
    • 2007
  • Uiseong subbasin belonging to Kyungsang basin resulted from volcanic activity in the late Cretaceous. In this study, we carry out MT and gravity survey at the Hwasan caldera, which was formed of volcanic and abyssal rocks complex, then analyze and identify geological substructure. Potential survey such as gravity and magnetic survey has been mainly carried out in former studies, so depth information for understanding substructure was not enough. To complement a potential survey, we use MT method, which has high vertical resolution. Moreover we make a simple 2D model comparing with former study. The result of MT and gravity 2D modeling shows that this area is roughly composed of 3 layers; The bottom layer is a basement. In the second layer, intrusive rocks having high resistivity is placed along the ring faults and the sedimentary layer of low resistivity is inside caldera. The highest layer is alluvium. To comprehend the 3D structure of the Hwasan caldera, we perform 3D gravity inversion, and construct the 3D model from the result of 3D gravity inversion. MT responses are calculated by using the constructed 3D model and the 3D model of the Hwasan caldera's structure is suggested after comparing the calculated values with the observed values at MT line.

  • PDF

A Study of Crust Structure at Svalbard Archipelago in Arctic Area by Using Gravity Data (중력자료를 이용한 북극 스발바드 군도의 지각구조연구)

  • Yu, Sang-Hoon;Yi, Song-Suk;Min, Kyung-Duck
    • The Korean Journal of Petroleum Geology
    • /
    • v.13 no.1
    • /
    • pp.17-23
    • /
    • 2007
  • Gravity characteristics are investigated in the vicinity of the DASAN scientific station, located at the Svalbard Archipelago, the Arctic using ArcGP data. Boundary effects of free-air gravity anomalies, which appeared generally at the continental margin, are erased after Bouguer correction was applied. Complete Bouguer anomalies produced after terrain correction by GrOPO30 show that gravity anomalies increase from continent to marine. This phenomena seem to be related to the rise of Moho discontinuity. The cut-off frequency of 0.16 was decided after power spectrum analysis and the gravity anomalies were divided into two parts. Residual anomalies in high frequency part show that characteristics of high values along the faults and of low values related to thick sediments in the continent. Characteristic is low values from basement subsidence of continental slope or thick sediments in the marine. The undulation of Moho discontinuity from 3-D inversion modeling show typical characteristics of continental margin that become higher from Svalbard archipelago to Knipovich ridge bordering Eurasian plate.

  • PDF

A STUDY ON THE MOHO UNDULATION OF THE KOREAN PENINSULA FROM SATELLITE GRAVITY DATA

  • Yu, Sang-Hoon;Hwang, Jong-Sun;Min, Kyung-Duck
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.589-592
    • /
    • 2005
  • Gravity characteristics and Moho undulations are investigated in the Korean peninsula by using satellite gravity data. According to the development of satellite geodesy, gravity potential models which have high accuracy and resolution were released. Using the EIGEN-CGOIC model based on low orbit satellite data such as CHAMP and GRACE, geoid and gravity anomaly were calculated by spherical harmonic analysis. The study area is located at $123^{\circ}\sim132^{\circ}E, 33^{\circ}\sim43^{\circ}$N including Korea. Free-air anomalies, which show the effect of terrain, have the values between $-37\sim724 mgal. After Bouguer correction, the range of simple Bouguer anomalies is $-221\sim246$ mgal. Complete Bouguer anomalies after terrain correction increase from continent to marine. This phenomenon is related rise of Moho discontinuity. The cut-frequency for extraction of Moho undulation was determined by power spectrum analysis, and then 3D inversion modeling was implemented. The mean, maximum, minimum, and standard deviation of Moho depth undulation are -26, -36, -8, and 4.9 krn, respectively.

  • PDF