• Title/Summary/Keyword: gravity load designed

Search Result 96, Processing Time 0.026 seconds

Behavior of continuous RC deep girders that support walls with long end shear spans

  • Lee, Han-Seon;Ko, Dong-Woo;Sun, Sung-Min
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.385-403
    • /
    • 2011
  • Continuous deep girders which transmit the gravity load from the upper wall to the lower columns have frequently long end shear spans between the boundary of the upper wall and the face of the lower column. This paper presents the results of tests and analyses performed on three 1:2.5 scale specimens with long end shear spans, (the ratios of shear-span/total depth: 1.8 < a/h < 2.5): one designed by the conventional approach using the beam theory and two by the strut-and-tie approach. The conclusions are as follows: (1) the yielding strength of the continuous RC deep girders is controlled by the tensile yielding of the bottom longitudinal reinforcements, being much larger than the nominal strength predicted by using the section analysis of the girder section only or using the strut-and-tie model based on elastic-analysis stress distribution. (2) The ultimate strengths are 22% to 26% larger than the yielding strength. This additional strength derives from the strain hardening of yielded reinforcements and the shear resistance due to continuity with the adjacent span. (3) The pattern of shear force flow and failure mode in shear zone varies depending on the amount of vertical shear reinforcement. And (4) it is necessary to take into account the existence of the upper wall in the analysis and design of the deep continuous transfer girders that support the upper wall with a long end shear span.

Seismic design of connections between steel outrigger beams and reinforced concrete walls

  • Deason, Jeremy T.;Tunc, Gokhan;Shahrooz, Bahram M.
    • Steel and Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.329-340
    • /
    • 2001
  • Cyclic response of "shear" connections between steel outrigger beams and reinforced concrete core walls is presented in this paper. The connections investigated in this paper consisted of a shear tab welded onto a plate that was connected to the core walls through multiple headed studs. The experimental data from six specimens point to a capacity larger than the design value. However, the mode of failure was through pullout of the embedded plate, or fracture of the weld between the studs and plate. Such brittle modes of failure need to be avoided through proper design. A capacity design method based on dissipating the input energy through yielding and fracture of the shear tab was developed. This approach requires a good understanding of the expected capacity of headed studs under combined gravity shear and cyclic axial load (tension and compression). A model was developed and verified against test results from six specimens. A specimen designed based on the proposed design methodology performed very well, and the connection did not fail until shear tab fractured after extensive yielding. The proposed design method is recommended for design of outrigger beam-wall connections.

Structural Performance Enhancement of Seismic Retrofitted Column Using New Reinforcing Materials (신보강재로 보수 보강한 기둥의 구조 성능 개선)

  • Oh, Chang-Hak;Han, Sang-Whan;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.121-128
    • /
    • 2001
  • Reinforced concrete frame buildings in regions of low to moderate seismicity are typically designed only for gravity loads with non-seismic detailing provisions of the code. These buildings possess strong beam-weak column, which brings about the brittle structural performance like the column sidesway failure mechanism during the strong lateral load. The objective of this paper is to enhance the column strength and deformation capacity for reconfiguring the structural failure mode by averting a column soft-story collapse and moving to a more ductile beam-sides way mechanism suing new reinforcing materials. Aramid fiber sheet and reinforcing rod-composite materials was used for this purpose. The column was modeled by the 2/3 scale experimental specimen retested. According to the concept of the capacity design, the damaged column was strengthened by the column jacketing using new reinfocing materials such as rod-composite materials. In conclusion, the improvement of the flexural strength is observed and the capacity of the energy dissipation and the ductility is enhanced, too.

  • PDF

Seismic Performance Evaluation of Flat Plate Structures Retrofitted with Steel Plates and Braces (강판과 가새로 보강된 무량판 구조물의 내진 성능평가)

  • Shin, Woo-Seung;Kim, Jin-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.451-458
    • /
    • 2008
  • In this study 3- and 6-story flat plate structures designed only for gravity load are retrofitted with steel plates and braces and their seismic performances are evaluated to verify the effect of seismic retrofit. According to the analysis results obtained from nonlinear static and dynamic analyses both the strength and stiffness are significantly enhanced as a result of the seismic retrofit. Especially the effect of column jacketing could be enhanced significantly when slabs were reinforced to prevent premature punching shear failure. When buckling-restrained braces are used instead of conventional braces, the structures showed more ductile behavior, especially in the 3-story structure.

Investigations of elastic vibration periods of tall reinforced concrete office buildings

  • Al-Balhawi, Ali;Zhang, Binsheng
    • Wind and Structures
    • /
    • v.29 no.3
    • /
    • pp.209-223
    • /
    • 2019
  • The assessment of wind-induced vibration for tall reinforced concrete (RC) buildings requires the accurate estimation of their dynamic properties, e.g., the fundamental vibration periods and damping ratios. In this study, RC frame-shear wall systems designed under gravity and wind loadings have been evaluated by utilising 3D FE modelling incorporating eigen-analysis to obtain the elastic periods of vibration. The conducted parameters consist of the number of storeys, the plan aspect ratio (AR) of buildings, the core dimensions, the space efficiency (SE), and the leasing depth (LD) between the internal central core and outer frames. This analysis provides a reliable basis for further investigating the effects of these parameters and establishing new formulas for predicting the fundamental vibration periods by using regression analyses on the obtained results. The proposed constrained numerically based formula for vibration periods of tall RC frame-shear wall office buildings in terms of the height of buildings reasonably agrees with some cited formulas for vibration period from design codes and standards. However, the same proposed formula has a high discrepancy with other cited formulas from the rest of design codes and standards. Also, the proposed formula agrees well with some cited experimentally based formulas.

Blast Fragility and Sensitivity Analyses of Steel Moment Frames with Plan Irregularities

  • Kumar, Anil;Matsagar, Vasant
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1684-1698
    • /
    • 2018
  • Fragility functions are determined for braced steel moment frames (SMFs) with plans such as square-, T-, L-, U-, trapezoidal-, and semicircular-shaped, subjected to blast. The frames are designed for gravity and seismic loads, but not necessarily for the blast loads. The blast load is computed for a wide range of scenarios involving different parameters, viz. charge weight, standoff distance, and blast location relative to plan of the structure followed by nonlinear dynamic analysis of the frames. The members failing in rotation lead to partial collapse due to plastic mechanism formation. The probabilities of partial collapse of the SMFs, with and without bracing system, due to the blast loading are computed to plot fragility curves. The charge weight and standoff distance are taken as Gaussian random input variables. The extent of propagation of the uncertainties in the input parameters onto the response quantities and fragility of the SMFs is assessed by computing Sobol sensitivity indices. The probabilistic analysis is conducted using Monte Carlo simulations. The frames have least failure probability for blasts occurring in front of their corners or convex face. Further, the unbraced frames are observed to have higher fragility as compared to counterpart braced frames for far-off detonations.

Opto-mechanical Design of Monocrystalline Silicon Mirror for a Reflective Imaging Optical System

  • Liu, Xiaofeng;Zhang, Xin;Tian, Fuxiang
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.236-243
    • /
    • 2022
  • Monocrystalline silicon has excellent properties, but it is difficult to design and manufacture silicon-based mirrors that can meet engineering applications because of its hard and brittle properties. This paper used monocrystalline silicon as the main mirror material in an imaging system to carry out a feasibility study. The lightweight design of the mirror is completed by the method of center support and edge cutting. The support structure of the mirror was designed to meet the conditions of wide temperature applications. Isight software was used to optimize the feasibility sample, and the optimized results are that the root mean square error of the mirror surface is 3.6 nm, the rigid body displacement of the mirror is 2.1 ㎛, and the angular displacement is 2.5" under the conditions of a temperature of ∆20 ℃ and a gravity load of 1 g. The optimized result show that the silicon-based mirror developed in this paper can meet the requirements of engineering applications. This research on silicon-based mirrors can provide guidance for the application of other silicon-based mirrors.

Influence of high axial compression ratios in RC columns on the seismic response of MRF buildings

  • Sergio Villar-Salinas;Sebastian Pacheco;Julian Carrillo;Francisco Lopez-Almansa
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.51-70
    • /
    • 2024
  • Poorly designed reinforced concrete (RC) columns of actual moment-resisting frame (MRF) buildings can undergo Axial Compression Ratios (ACR) so high as their demand exceeds their capacity, even for serviceability gravity load combinations, this lack commonly leads to insufficient seismic strength. Nonetheless, many seismic design codes do not specify limits for ACR. The main contribution of this research is to investigate the need to limit the ACR in seismic design. For this purpose, three prototype 6 and 11-story RC MRF buildings are analyzed in this paper, these buildings have columns undergoing excessive ACR, according to the limits prescribed by standards. To better that situation, three types of alterations are performed: retrofitting the abovementioned overloaded columns by steel jacketing, increasing the concrete strength, and reducing the number of stories. Several finite element analyses are conducted using the well-known software SAP2000 and the results are used for further calculations. Code-type and pushover analyses are performed on the original and retrofitted buildings, the suitability of the other modified buildings is checked by code-type analyses only. The obtained results suggest that ACR is a rather reliable indicator of the final building strength, hence, apparently, limiting the ACR in the standards (for early stages of design) might avoid unnecessary verifications.

Generalization of an Evaluation Formula for Bearing Pressures on the Rubble Mound of Gravity-Based Harbor Structures (중력식 항만구조물의 사석마운드 지반반력 평가식의 일반화)

  • Woo-Sun Park
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.128-137
    • /
    • 2023
  • In this study, the bearing pressure on the rubble mound of a gravity-based harbor structure with an arbitrarily shaped bottom was targeted. Assuming that the bottom of the structure is a rigid body, the rubble mound was modeled as a linear spring uniformly distributed on the bottom that resists compression only, and the bearing pressure evaluation formula was derived. It was confirmed that there were no errors in the derivation process by showing that when the bottom was square, the derived equation was converted to the equation used in the design. In addition, the validity of the derived equation was proven by examining the behavior and convergence value of the bearing pressure when an arbitrarily shaped bottom converges into a square one. In order to examine the adequacy of the method used in the current design, the end bearing pressure for the pre-designed breakwater cross-section was calculated and compared with the values in the design document. As a result, it was shown that the method used for design was not appropriate as it gave unsafe results. In particular, the difference was larger when the eccentricity of the vertical load was large, such as in the case of extreme design conditions.

Optimal Operating Condition of Vortex Separator for Combined Sewer Overflows Treatment (합류식 하수관거 월류수 처리를 위한 와류형 분리장치의 최적 운전조건)

  • Han, Jung-kyun;Joo, Jae-young;Lee, Bum-joon;Na, Ji-hun;Park, Chul-hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.557-564
    • /
    • 2009
  • A combined sewer system can quickly drain both storm water and sewage, improve the living environment and resolve flood measures. A combined sewer system is much superior to separate sewer system in reduction of the non-point source pollutant load. However, during rainfall. it is impossible in time, space and economic terms to cope with the entire volume of storm water. A sewage system that exceeds the capacity of the sewer facilities drain into the river mixed with storm-water. In addition, high concentration of CSOs by first-flush increase pollution load and reduce treatment efficiency in sewage treatment plant. The aim of this study was to develope a processing unit for the removal of high CSOs concentrations in relation to water quality during rainfall events in a combined sewer. The most suitable operational design for processing facilities under various conditions was also determined. With a designed discharge of 19.89 m/min, the removal efficiency was good, without excessive overflow, but it was less effective in relation to underflow, and decreased with decreasing particle size and specific gravity. It was necessary to lessen radius of vortex separator for increasing inlet velocity in optimum range for efficient performance, and removal efficiency was considered to high because of rotation increases through enlargement of comparing height of vortex separator in diameter. By distribution of influent particle size, the actual turbulent flow and experimental results was a little different from the theoretical removal efficiency due to turbulent effect in device.