• Title/Summary/Keyword: gravity load

Search Result 373, Processing Time 0.029 seconds

Test of SRC Column-to-Composite Beam Connection under Gravity Loading (중력하중을 받는 SRC기둥-합성보 접합부 실험)

  • Kim, Young Ju;Bae, Jae Hoon;Ahn, Tae Sang;Jang, Seong Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.441-452
    • /
    • 2014
  • In this paper, steel reinforced concrete(SRC) column and composite beam connections were statically tested under gravity loading. The composite beam consists of H-section and U-section members. Five full-scaled specimens were designed to investigate the effect of a number of parameters on behavior of connections such as H-section size, the presence of stud connector, the presence of stiffeners and top bars. In addition, structural performance of welded joint between the H-section and the U-section members is mainly discussed, with an emphasis on initial stiffness, strength, deformation capacity.

A Study on the Strength and Stiffness of the Concrete Filled Circular Tube Beam to Column Connections under the Gravity Loads (연직하중을 받는 콘크리트충전 원형강관기둥의 접합부 내력에 관한 연구)

  • Lee, Myung Woo;Choi, Sung Mo;Kim, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.611-623
    • /
    • 1997
  • This paper provides the results of an experimental and analytical study performed on the beam to Concrete Filled Circular Steel Column connections with the external stiffener rings under the gravity loads. Specimens are modeled as a 1/4 scale of the beam-columns as gravity loads are applied to a multi-story frame. Important parameters in this study are the width of the external rings, the diameter-thickness ratios of column and whether or not the external rings are welded to the circular column. A total of 20 specimens are tested to clarify the structural behavior of the CFT column connections with the external stiffener rings. The test results are summarized for the yield and maximum strength and stiffness. The existing design equations for the allowable and yield load capacities are referred to verify the structural characteristics for the connections.

  • PDF

Seismic Performance of Gravity-Load Designed Post-Tensioned Flat Plate Frames (중력하중으로 설계된 포스트텐션 플랫플레이트 골조의 내진성능)

  • Park, Young-Mi;Rew, Youn-Ho;Han, Sang-Whan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.127-128
    • /
    • 2010
  • The purpose of this study is to evaluate the seismic performance of gravity-designed post tensioned (PT) flat plate frames with and without slab bottom reinforcement passing through the column. For the PT flat plate frames, the slab bottom reinforcement is often omitted since the requirement for the slab bottom reinforcement for PT flat plates is not clearly specified in ACI 318-08. This study evaluates the seismic performance of the model frames was evaluated by conducting nonlinear time history analysis. The seismic performance of PT flat plate frames is significantly improved by placing slab bottom reinforcement passing through the column.

  • PDF

The buried arch structural system for underground structures

  • Hernandez-Montes, Enrique;Aschheim, Mark;Gil-Martin, Luisa Maria
    • Structural Engineering and Mechanics
    • /
    • v.20 no.1
    • /
    • pp.69-83
    • /
    • 2005
  • In many cases, underground structures are built using conventional above-grade structural systems to carry gravity load. This paper proposes the use of underground arches, termed "buried arches", to support gravity loads, wherein the horizontal thrust of the arch is equilibrated by soil pressure. Because the horizontal soil pressure increases with depth, the depth of the arch may be reduced as the depth below grade increases. Critical to the success of such an approach is a proper accounting of creep and shrinkage for arches made of reinforced concrete. This paper addresses the influence of equilibrium, creep, and shrinkage as they affect the design of the arch from a theoretical perspective. Several examples illustrate the use of buried arches for the design of underground parking structures.

Design of Robust FPID Controller and Control Characteristics for Load Frequency Control in Power System (전력시스템의 부하주파수제어를 위한 강인한 FPID제어기의 설계와 제어특성)

  • Moon, Young-Moon;Kim, Hae-Jae;Ahn, In-Mo;Joo, Seok-Min
    • Proceedings of the KIEE Conference
    • /
    • 1999.11a
    • /
    • pp.28-30
    • /
    • 1999
  • This paper proposes a robust FPID(Fuzzy Proportional Integral Derivative) controller for the LFC(load frequency control) of 2-area power system. The PID gain parameters of the proposed robust FPID controller are self-tuned by PSGM(Product Sum Gravity Method) which is very similiar to human's inference procedures. As the results of simulation, the proposed FPID controller against various load disturbances shows that it is superior to the conventional control techniques such as optimal, PID and fuzzy control in the response characteristics of frequency and tie line power flow.

  • PDF

State-of-the-art of advanced inelastic analysis of steel and composite structures

  • Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.341-354
    • /
    • 2001
  • This paper provides a state-of-the-art review on advanced analysis models for investigating the load-displacement and ultimate load behaviour of steel and composite frames subjected to static gravity and lateral loads. Various inelastic analysis models for steel and composite members are reviewed. Composite beams under positive and negative moments are analysed using a moment-curvature relationship which captures the effects of concrete cracking and steel yielding along the members length. Beam-to-column connections are modeled using rotational spring. Building core walls are modeled using thin-walled element. Finally, the nonlinear behaviour of a complete multi-storey building frame consisting of a centre core-wall and the perimeter frames for lateral-load resistance is investigated. The performance of the total building system is evaluated in term of its serviceability and ultimate limit states.

Ductility of Column-Slab eoint in R/C Flat Plate System (플랫 플레이트 구조의 기둥.슬래브 접합부 연성에 관한 연구)

  • 김형기;박복만
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.113-119
    • /
    • 2000
  • The R/C flat plate system provides architectural flexibility, clear space, reduced building height, simple formwork, which consequently enhance constructibility. One of the serious problems in the flat plate system is brittle punching shear failure due to transfer of shear force and unbalanced moments in column-slab joint. Recently, the flat plate system accompanied with shear walls to resist the lateral loads is applied to high-rise buidings. Although the flat plate system is not considered in design as part of the lateral load-resisting system, it is required that this system keeps the ductile behavior for the lateral displacement of the building. However, it is unclear whether the column-slab joint possesses ductility enough to survive the lateral deformation. The objective of this paper is to investigate the major parameters that influence the ductility of R/C flat plate system by examining the existing experiments on column-slab joint. The effects of gravity load and shear reinforcement on the ductility of the flat plate system are presented.

Structural Analysis for the Collapse Accident of Tower Crane (타워크레인 붕괴사고의 구조적 분석)

  • 이명구;노민래
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.147-152
    • /
    • 2001
  • The tower cranes are the very useful construction machine in the high place works. But they are very susceptible to the load balance, the wind load and the hanging load because they are the very slender structures and those center of gravity is located in the upper part. Therefore, the collapse accidents of tower one have repeatedly happened during the assemble or disassemble works. The correcting frame may has often used in order to correct the error in the setting of foundation anchors. The goal of this study is that propose the methods preventible the collapse accident of tower crane which is constructed by using the correcting frame. In order to accomplish the goal of this study, the field survey, the reference investigation and the structure analysis were performed for the collapse accident of tower crane using the correcting frame. This study result in the methods preventible the same accident.

  • PDF

A load increment method for ductile reinforced concrete (RC) frame structures considering strain hardening effects

  • Gunhan Aksoylu, M.;Girgin, Konuralp
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.231-247
    • /
    • 2011
  • This study introduces a new load increment method for the ductile reinforced concrete (RC) frame structures by including strain-hardening effects. The proposed method is a nonlinear static analysis technique employed for RC frame structures subjected to constant gravity loads and monotonically increasing lateral loads. The material nonlinearity in RC structural elements is considered by adopting plastic hinge concept which is extended by including the strain hardening as well as interaction between bending moment and axial force. Geometric non-linearity, known as second order effect, is implemented to the method as well.

Structural Optimization of a RC Building for Minimizing Weight (중량 최소화를 위한 RC 빌딩의 구조 최적설계)

  • Park, Chang-Hyun;Ahn, Hee-Jae;Choi, Dong-Hoon;Jung, Cheul-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.501-507
    • /
    • 2010
  • Structural optimization is performed to minimize the weight of a RC building structure, which has eight floors above ground and three underground, under gravity, wind, and seismic loads. Design optimization problem is formulated to find the values of the design variables that minimize the volume while satisfying various design and side constraints. To solved the optimization problem posed, several design techniques equipped in PIAnO, a commercial PIDO tool, are used. DOE is used to generate training points and structural analysis is performed using MIADS Gen, a general-purpose structural analysis CAE tool. Then, meta-models are generated from structural analysis results and accuracies of meta-models are evaluated. Next, design optimization is performed by using the verified meta-models and optimization technique equipped in PIAnO. Finally, we obtained optimal results, which could demonstrate the effectiveness of our design method.