• 제목/요약/키워드: gravitational field

검색결과 165건 처리시간 0.022초

가열되는 회전원판으로의 입자 침착 해석 (Analysis on Particle Deposition on a Heated Rotating Disk)

  • 유경훈
    • 대한기계학회논문집B
    • /
    • 제26권2호
    • /
    • pp.245-252
    • /
    • 2002
  • Numerical analysis was conducted to characterize particle deposition on a horizontal rotating disk with thermophorectic effect under laminar flow field. The particle transport mechanisms considered were convection, Brownian diffusion, gravitational settling and thermophoresis. The averaged particle deposition velocities and their radial distributions for the upper surface of the disk were calculated from the particle concentration equation in a Eulerian frame of reference for rotating speeds of 0∼1000rpm and temperature differences of 0∼5K. It was observed from the numerical results that the rotation effect of disk increased the averaged deposition velocities, and enhanced the uniformity of local deposition velocities on the upper surface compared with those of the disk at rest. It was also shown that the heating of the disk with ΔT=5K decreased deposition velocity over a fairly broad range of particle sizes. Finally, an approximate deposition velocity model for the rotating disk was suggested. The comparison of the present numerical results with the results of the approximate model and the available experimental results showed relatively good agreement between them.

EHT data processing and BH shadow imaging techniques

  • Cho, Ilje
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.59.2-59.2
    • /
    • 2019
  • Event Horizon Telescope (EHT) aims to resolve the innermost region to the super massive black hole (SMBH) with its extremely high angular resolution (~20-25 uas) and enhanced sensitivity (down to 1-10 mJy) in concert with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 mm wavelength. This has a great importance as the first observational probe of the black hole shadow which has been theoretically predicted as a ring-like emission affected by the general relativistic effect under a strong gravitational field of SMBH. During the 2017 April 5-11, four nights of EHT observing campaign were carried out towards its primary targets, M87 and $SgrA{\ast}$. To robustly ensure the data processing, independent pipelines for various radio data calibration softwares (e.g., AIPS, HOPS, CASA) have been developed and cross-compared each other. The EHT has also been developing newer interferometric imaging techniques (e.g., eht-imaging-library, SMILI, dynamical imaging), as well as using an established method (CLEAN). With these, the EHT has designed various strategies which will be adopted for convincing imaging results. In this talk, I review how the robustness of EHT data processing and imaging will be validated so that the results can be ensured against well known uncertainties or biases in the interferometric data calibration and imaging.

  • PDF

Large Scale Distribution of Globular Clusters in the Coma Cluster

  • O, Seong-A;Lee, Myung Gyoon
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.41.3-42
    • /
    • 2021
  • Coma cluster (Abell 1656) is one of the most massive local galaxy clusters such as Virgo, Fornax, and Perseus, which holds a large collection of globular clusters. Globular cluster systems (GCSs) in a galaxy cluster tell us a history of hierarchical cluster assembly and intracluster GCs (ICGCs) are known to trace the gravitational potential of the galaxy cluster. Previous studies of GCSs in Coma mainly utilized data obtained using Hubble Space Telescope (HST) with high spatial resolution. However, most of the data were based on narrow-field pointing observations. In this study we present the widest survey of GCSs in the Coma cluster using the archival Subaru/Hyper Suprime-Cam (HSC) g and r images, supplemented with the archival HST images. The Coma GCSs are largely extended in E-W and SW direction, along the general direction of Coma-Abell 1367 filament. This global structure of the GCSs is consistent with the spatial distribution of the intracluster light (ICL). ICGC spatial distribution is largely extended to almost ~50% of the virial radius. Most of these ICGCs are blue and metal-poor, which supports the scenario that ICGCs are mainly originated from dwarf galaxies and some proportion from brighter galaxies. Implications of the results will be discussed.

  • PDF

Star formation in nuclear rings controlled by bar-driven gas inflow

  • Moon, Sanghyuk;Kim, Woong-Tae;Kim, Chang-Goo;Ostriker, Eve C.
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.51.2-51.2
    • /
    • 2021
  • Nuclear rings are sites of intense star formation at the center of barred spiral galaxies. A straightforward but unanswered question is what controls star formation rate (SFR) in nuclear rings. To understand how the ring SFR is related to mass inflow rate, gas content, and background gravitational field, we run a series of semi-global hydrodynamic simulations of nuclear rings, adopting the TIGRESS framework to handle radiative heating and cooling as well as star formation and supernova feedback. We find: 1) when the mass inflow rate is constant, star formation proceeds in a remarkably steady fashion, without showing any burst-quench behavior suggested in the literature; 2) the steady state SFR has a simple linear relationship with the inflow rate rather than the ring gas mass; 3) the midplane pressure balances the weight of the overlying gas and the SFR surface density is linearly correlated with the midplane pressure, consistent with the self-regulated star formation theory. We suggest that the ring SFR is controlled by the mass inflow rate in the first place, while the gas mass adjusts to the resulting feedback in the course of achieving the vertical dynamical equilibrium.

  • PDF

Design of Orbit Simulation Tool for Lunar Navigation Satellite System

  • Hojoon Jeong;Jaeuk Park;Junwon Song;Minjae Kang;Changdon Kee
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권4호
    • /
    • pp.335-342
    • /
    • 2023
  • Lunar Navigation Satellite System refers to a constellation of satellite providing PNT services on the moon. LNSS consists of main satellite and navigation satellites. Navigation satellites orbiting around the moon and a main satellite moves the area between the moon and the L2 point. The navigation satellite performs the same role as the Earth's GNSS satellite, and the main satellite communicates with the Earth for time synchronization. Due to the effect of the non-uniform shape of the moon, it is necessary to focus on the influence of the lunar gravitational field when designing the orbit simulation for navigation satellite. Since the main satellite is farther away from the moon than the navigation satellite, both the earth's gravity and the moon's gravity must be considered simultaneously when designing the orbit simulation for main satellite. Therefore, the main satellite orbit simulation must be designed through the three-body problem between the Earth, the moon, and the main satellite. In this paper, the orbit simulation tool for main satellite and navigation satellite required for LNSS was designed. The orbit simulation considers the environment characteristics of the moon. As a result of comparing long-term data (180 days) with the commercial program GMAT, it was confirmed that there was an error of about 1 m.

AUGMENTING WFIRST MICROLENSING WITH A GROUND-BASED TELESCOPE NETWORK

  • ZHU, WEI;GOULD, ANDREW
    • 천문학회지
    • /
    • 제49권3호
    • /
    • pp.93-107
    • /
    • 2016
  • Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M ≳ M. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.

A Study on Numerical Simulation of Gaseous Flow in SCR Catalytic Filter of Diesel Exhaust Gas Aftertreatment Device

  • Bae, Myung-Whan;Syaiful, Syaiful;Mochimaru, Yoshihiro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권3호
    • /
    • pp.360-368
    • /
    • 2010
  • A SCR catalytic filter system is used for reducing $NO_x$ and soot emissions simultaneously from diesel combustors. The amount of ammonia (as a reducing agent) must be controlled with the amount of $NO_x$ to obtain an optimal $NO_x$ conversion. Hence, gas mixing between ammonia and exhaust gases is vital to ensure that the SCR catalyst is optimally used. If ammonia mass distribution is not uniform, slip potential will occur in rich concentration areas. At lean areas, on the other hand, the catalyst is not fully active. The better mixing is indicated by the higher uniformity of ammonia mass distribution which is necessary to be considered in SCR catalytic filter system. The ammonia mass distributions are depended on the flow field of fluids. In this study, the velocity field of gaseous flow is investigated to characterize the transport of ammonia in SCR catalytic filter system. The influence of different injection placements on the ammonia mass distribution is also discussed. The results show that the ammonia mass distribution is more uniform for the injector directed radially perpendicular to the main flow of inlet at the gravitational direction than that at the side wall for both laminar (Re = 640) and turbulent flows (Re = 4255). It is also found that the mixing index decreases as increasing the heating temperature in the case of ammonia injected at the side wall.

수평배수재가 포설된 준설매립지반의 압밀해석(II) - 현장설치조건에 의한 개량효율 분석 - (Consolidation Analysis of Dredged Fill Ground Installed with Horizontal Drains (II) - Improvement Efficiency Analysis with Field Installation Conditions -)

  • 장연수;박정용;김수삼
    • 한국지반공학회논문집
    • /
    • 제21권10호
    • /
    • pp.41-48
    • /
    • 2005
  • 수평배수재가 설치된 준설매립지반의 중력에 의한 압밀 거동을 수평배수 자중압밀해석을 위하여 개발된 유한차분 프로그램을 이용하여 해석하였다. 수평배수재 단면의 크기와 수평배수재의 설치단면의 방향(수직/수평)이 대상지반의 압밀에 미치는 영향을 분석하였다. 또한 시공된 지반에서 발생 가능한 요인들, 즉 하부 무처리층의 존재, 그리고 수평배수재 단부에서의 수두적체 등이 압밀속도와 침하량에 미치는 영향도 분석하였다. 그 결과, 수평배수재의 단면적을 2배로 증가하여도 압밀 소요시간이 미량 감소하는데 그쳤으나, 수평배수재를 수직방향으로 설치한 경우 수평방향 설치시에 비하여 압밀소요 시간이 매우 감소하는 것으로 평가되었다. 해석결과로 부터 하부 무처리층의 영향이 처리 지반의 장기 침하에 미치는 영향이 크며, 배수재 단부에 발생하는 수두적체는 압밀시간 증가와 미진한 압밀효과를 초래하는 것을 정량적으로 알 수 있었다.

타원 기둥에 의한 자력 벡터 및 자력 변화율 텐서 반응식 (Expressions of Magnetic vector and Magnetic Gradient Tensor due to an Elliptical Cylinder)

  • 임형래;엄주영
    • 지구물리와물리탐사
    • /
    • 제26권2호
    • /
    • pp.77-83
    • /
    • 2023
  • 이 논문에서는 타원 기둥 형태의 이상체에 의한 자력 벡터와 자력 변화율 텐서 반응식을 유도하였다. 화성암 관입이나 킴벌라이트 구조 등은 축 대칭성을 가지면서 주향 방향과 수직한 방향의 반지름이 서로 다른 타원 기둥 형태를 가지는 경우가 많다. 이런 타원 기둥의 자력 반응은 이전 논문에서 유도한 중력 변화율 텐서에 자화 방향에 대한 정보를 포함시킨 포아송 관계식을 이용하여 유도하였다. 타원 기둥의 자력 변화율 텐서는 벡터 자력을 미분하여 유도하는데 삼중 적분으로 표현되는 타원 기둥의 인력 퍼텐셜을 각 축방향으로 3회 미분한 총 10개의 삼중 미분 함수를 구하는 것과 동일하다. 미분과 적분의 순서는 바꾸는 것이 가능하므로 결과적으로 자력 변화율 텐서는 타원 기둥의 인력 퍼텐셜을 3회 미분한 후, 깊이 방향으로 적분하고 나머지 이중 적분은 복소 평면에서 타원 기둥의 단면을 폐곡선으로 하는 경로를 따라 선적분으로 변환하여 유도된다. 이 논문에서 복소 평면에서 선적분으로 유도한 자력 및 자력 변화율 텐서 반응식은 립쉬츠-한켈 적분으로 유도한 원기둥의 자력 및 자력 변화율 텐서 반응식과 완벽하게 일치함을 보였다.

중금속으로 오염된 점성토의 동전기영동에 의한 침강 거동에 관한 연구 (Electrophoretic Particle Movement in Suspension Considering the Gravitational Settling and Sedimentation of Clayey Soil)

  • 이명호
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제12권3호
    • /
    • pp.44-52
    • /
    • 2007
  • 다공질매체를 통한 미세 입자의 이동은 고함수비 오염준설토의 탈수 및 오염물질의 제거와 같은 지반의 안정화 처리 및 토양의 정화에 있어서 중요한 메커니즘이 되고 있다. 일반적으로 음전하를 갖는 미세 입자들은 동전기영동의 영향으로 양극(+)방향으로 이동하게 된다. 그러나 중금속과 같은 양전하를 띈 오염물질로 흡착된 미세 입자의 경우 중금속의 종류 및 오염도에 따라 동전기영동에 의한 움직임은 제약을 받을 수 있다. 본 연구에서는 자연상태의 미세토립자의 침강거동 및 직류전류의 영향 하에서 발생되는 동전기영동에 의한 침강 거동에 대하여 조사하였다.